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Priority Queues 9
Priority Queue. Like a
special/fast lane, items (e.g.,
jobs) in a priority queue are
serviced according to how
“important” they are, not
necessarily first-come
first-serve. This has far-ranging
applications.

This chapter discusses a collection data type that is similar to but general-
izes the queue data type—whereas a queue implements a first-come first-serve
policy, a priority queue has a notion of the priority of each member item and
the item with the highest priority is served first. To motivate the priority
queue data type, consider the following standard job interview question:

We are presented with a huge list of numbers that arrive
one by one, and we want to find the smallest k numbers. The
input list is gigantic and cannot be stored entirely in memory.
However, k is small relative to the length of the entire list n (i.e.,
k� n). What are we to do?

A natural idea is to maintain a list of the smallest k numbers we have seen
so far and update that list as we observe more elements. To carry out this idea,
observe that a new number will replace a number in the existing list if it is
among the smallest k numbers—and the number that will be removed from
the list is the largest number in the list. Example. Consider k = 3 and

the input numbers 20 4 9 11

10 8 7 6 3 1. Over time, the
list maintained (bottom in the
code) looks as follows:

New # bottom

20 [20]
4 [20, 4]
9 [20, 4, 9]
11 [��20, 4, 9, 11]
10 [4, 9, ��11, 10]
8 [4, 9, ��10, 8]
7 [4, �9, 8, 7]
6 [4, �8, 7, 6]
3 [4, �7, 6, 3]
1 [4, �6, 3, 1]

Translating this idea into code is straightforward. In an example Java
implementation below, the method receive will be called every time a number
arrives and the variable bottom keeps the smallest k numbers so far.

Code 9.1: Find the smallest k numbers from a long list.

 public class SmallestK {
 List<Integer> bottom; // keep the smallest k numbers
 int k;
 SmallestK(int k) { bottom = new ArrayList<>(); this.k=k; }


 void receive(int num) {
 bottom.add(num);
 while (bottom.size() > k) {
 int largest = Collections.max(bottom);

 bottom.remove(largest);
 }
 }


 List<Integer> bottomK() { return new ArrayList<>(bottom); }
 }
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The more involved question is, what is the running time and how much
space does it need? A moment’s thought reveals that after each arrival (i.e.,
call to receive), bottom is kept at length at most k. Inside receive, the list
can temporarily grow to length at most k + 1 but will be shrunk back to
length at most k before the method terminates. Both Collections.max and
bottom.remove(.) have to each look through the list, costing O(k). So per
arrival, we spend O(k) time. Furthermore, the space requirement is also O(k).
This means for an input sequence of length n, this costs us O(nk) time.

Our goal in this chapter is to develop a data type that makes it possible to
quickly find and remove the maximum item in a collection—without harming
the speed of adding an item to the collection too much.

9.1 A Priority Queue Data Type

A priority queue stores a collection of elements where each element has an
associated priority that decides the ordering within the queue. We model the
priorities as a function p(e) that returns the priority of an element e. This
function is mainly for exposition purposes and is often never materialized
or stored anywhere in the implementation. Priorities determine the relative
positions of the elements in the queue. Below are three typical scenarios:

• The priority is the element itself, so p(e) = e.

• The priority is easily computable from the element, so p(e) takes practi-
cally no time to compute from e.

• The priority is stored as part of the element: for example, whereas the ac-
tual element is e, we store inside our data structure a pair (priority, e),
so the priority p(e) is priority and is retrieved from the storage.

Operations. In addition to basic collection operations (e.g., add, isEmpty,
size), a priority queue data type supports the following operations:

• findMax() — return without removing the element with the highest
priority.

• removeMax() — remove and return the element with the highest priority.

Code 9.2 shows a minimal Java interface for the priority queue data type as
discussed. Elements of such a priority queue are of a generic type T. By using
Java’s Comparable interface, the users can specify how the elements will be
compared according to their priorities. For the purpose of this chapter, if
multiple elements have the same highest priority, these operations can return
any one of them in a consistent manner. While this variant is designed for
efficiently extracting the maximum, variants that extract the minimum are
prevalent and can be defined symmetrically.

It is worth noting that the priority queue data type is different from the first-
in first-out (FIFO) queue studied previously. Unlike in a standard queue, a
priority queue removes the highest-priority item first. Indeed, many common
scenarios require that the “client” with the highest priority be helped first
(e.g., an emergency-room waiting line, plane taking off, packet prioritization),
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Code 9.2: A minimal priority queue interface in Java.

 interface PriorityQueue<T extends Comparable<? super T>> {
 // is this empty?
 boolean isEmpty();


 // add elt to the priority queue
 void add(T elt);


 // return the maximum value
 T findMax();



 // remove the maximum value
 void removeMax();


 // how many entries?
 int size();
 }

regardless of the arrival order. Thus, the first-in first-out (FIFO) queue we
studied previously does not capture this setting. In this sense, a priority
queue is closely related to a sorted sequence; however, a priority queue is
more dynamic—new elements are added over time (interleaved with the
removal operation) and the max-priority element is defined for that instant.

Applications. Aside from the motivating example at the start of this chapter,
the priority queue data type has found many applications, including

• sorting — we first insert all the elements into a priority queue and begin
to successively remove elements from the queue (they will appear in
descending order).

• event simulation and job scheduling — we keep a priority queue or-
dered by event time or job priority; the “jobs” can then be processed in
chronological order or in a way that the important jobs do not starve).

• graph exploration and game playing AI — we keep a priority queue full
of possible next moves ordered by how likely they will turn out to be a
good move and use the priority queue to help pick the best next move.

In many of these applications, the priority queue data structure will have to
handle a large number of entries, calling for their operations to be supported
efficiently. We will now explore a few implementation options.

9.2 Basic Implementations

Implementation I: Unordered Sequence

We start out with an extremely simple design. In the first implementation, our
underlying data structure will be a sequence data type. In Java, we can choose
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among a number of options, for example, ArrayList and LinkedList. We will
store the elements in the collection unordered. Therefore, it is straightforward
to add an element to the collection. Each new element can be appended to the
back of the sequence, a quick operation for both the array list and linked list;
however, finding the maximum and removing the maximum, though easy
to implement, will take some time. An example Java implementation for the
Integer element type is below:

Code 9.3: A priority queue kept as an unsorted sequence

 import java.util.*;


 public class UnorderedPQ implements PriorityQueue<Integer> {
 List<Integer> entries;
 UnorderedPQ() { entries = new ArrayList<>(); }


 // is this empty?
 public boolean isEmpty() { return 0==entries.size(); }


 // add elt to the priority queue
 public void add(Integer elt) { entries.add(elt); }


 // return the maximum value
 public Integer findMax() {
 return Collections.max(entries);
 }


 // delete the maximum value
 public void removeMax() {
 int maxValue = Collections.max(entries);
 entries.remove(maxValue);
 }


 public int size() { return entries.size(); }
 }

The choice of an ArrayList means that appending takes O(1) time, so add
is an O(1)-time operation. But both findMax and removeMax are implemented
via Collections.max, which scans the sequence for the maximum element
and thus requires O(n) time, where n is the size of the collection. Notice that
any correct algorithm will have to carry out this scan because the sequence is
arbitrarily ordered. Perhaps, keeping the sequence ordered (i.e., sorted) can
help. We will explore this idea next.

Implementation II: Ordered Sequence

The previous implementation requires O(n) to find the maximum element.
We will attempt to make this operation faster. If the location of the maximum
were known, we would not have to scan the whole sequence. In the second
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implementation, we will experiment with keeping the sequence sorted. With
this arrangement, finding the maximum and/or deleting it is easy because
we know the maximum element is at the back of the sequence, so reading
and popping the back will do. Adding a new element, however, will be more
complicated as keeping the sequence sorted means finding the right spot for
the new element and inserting it there.

In terms of running time, findMax and removeMax only take O(1) time now.
But if we keep the sequence as an ArrayList as before, the running time of
add is inevitably O(n) in the worst case: the new element might need to be
positioned at the front of the sequence, causing all existing elements to shift.
It is instructive to convince yourself that changing the underlying storage to a
LinkedList does not improve the worst-case time bounds either.

Running Time At A Glance

The table below shows the running times for the two implementations we just
discussed and the running times we anticipate for our third implementation.
Let n be the number of elements in the priority queue at that moment.

Operations Unordered List Ordered List Binary Heap

add O(1) O(n) O(logn)
findMax O(n) O(1) O(1)
removeMax O(n) O(1) O(logn)

9.3 The Binary Heap Structure

In the previous two implementations, we either keep the collection fully sorted
at all times or keep it arbitrarily ordered. But these are the two extremes that
either do too much or too little. We strive for a middle ground: keep the
collection partially sorted—that is, sufficiently sorted to answer our question
but without doing too much work.

Trees, Very Briefly

The collection data structures we have seen so far share a common property:
they are linear—there is a sense of an absolute position on a line from left to
right. Often, this confines our thinking and limits what we can achieve.

It is possible, however, to break this pattern. One of the most important
nonlinear structures is the tree structure. We will briefly discuss it to get a feel
for what trees are and discuss it in depth in subsequent chapters.

An Example Tree. The tree
below has the root at the top.

root

a
b

c

The children of the root are a,
b, and c.

Instead of organizing data linearly, a tree is a hierarchical structure with
a few notable properties. Each item in a tree is generically called a node.
There is a special top element known as the root. Every node has zero or
more children. When a node does not have any children, it is called a leaf. In
computer science, we often draw trees with its root node at the top and their
descendants in subsequent layers below that.
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For now, we are most interested in binary trees. These are tree structures
where each node can have at most two children. We will see how to take
advantage of such a structure to obtain a fast implementation for the priority
queue data type.

Binary Heap Invariants

The basic idea is to keep the items sorted enough so that the maximum item
can be easily discovered but at the same time, it must not be too rigid so that
each add operation only has to move a few things around.

To accomplish this, we are keeping a binary tree of a special kind. Remem-
ber that a binary tree is a tree where each parent can have at most 2 children.
Below, we give an example of a binary tree. This is a perfect binary tree—a
binary tree where every node except the leaves has two children and the
leaves are all at the same level.

However, a binary tree is not always perfect, but in general, one hopes to
get close to the shape of the perfect tree.Heap Ordering. If x, y and z

are the priorities at the
respective nodes, then the

invariant says that x > y and, if
existed, x > z.

x

y z

Definition 9.1 (Binary Heap Tree). A binary heap tree is a binary tree that
maintains the following two invariants:

(I1) The priority of an element is greater than or equal to the priorities
of its children. (Among the children any order is fine.)

(I2) The tree is complete—full at all levels except potentially at bottom
level (the leaves) where it must be left-aligned.

Let us examine these invariants in turn: The first invariant guarantees,
among other things, that the root of the tree (the top node) always has the
max element in the collection. As we will soon see, it further guarantees that
adding an item or deleting the max will never cost more than the number of
levels the heap tree has. The following trees demonstrate the first invariant
(or the lack thereof); they do not necessarily respect the second invariant.

9

4

2

7

1 5

9

7

2 4

5

1

9

7

5

2

1 4

All three figures have the same set of elements. The left and the middle figures
show examples of trees that respect the first invariant, but only the middle
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also satisfies the second invariant. The right figure violates the first invariant
because although 2 is bigger than 1, it is smaller than 4. Notice that as we
made an observation earlier, the maximum element is necessarily at the top.

The second invariant controls the shape of the tree and effectively the
height. By indicating that the tree must be full at all levels except the last,
we know that the shape of the tree is completely determined by the number
of elements—and not at all by what the data items are. For example, the
following figure shows the shapes for n = 1, 2, 3, . . . , 9.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

Below are two examples of binary heap trees (i.e, they satisfy both the
invariants) on the set of elements {1, 2, 4, 5, 7, 9}:

9

7

1 5

4

2

9

5

4 1

7

2

9.4 Operations On The Binary Heap

To satisfy the priority queue interface, we aim to support the following main
operations: findMax, add, and removeMax. Throughout, the binary heap is a
maximum-oriented heap—that is, the root has the largest element. We will
discuss these operations in turn.

findMax: Finding The Maximum Element

By the binary heap invariant, the maximum element is located at the root of
the binary heap tree. This can be shown inductively. Thus, findMax can simply
return the element at the top of the tree (aka. the root). This encourages a data
storage format where the root is easily accessible.

add: Inserting Into A Heap

We have established that the shape of a heap tree is completely determined
by the number of nodes. Therefore, there is no question what shape the new
tree is going to take. Specifically, because the tree is filled level by level, the
new tree takes the shape of the old tree plus a new node attached to the
bottom-right end. However, we cannot simply put the new item there since
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it will violate the heap ordering invariant. The more involved question is,
therefore, how we can add the new item and maintain the heap ordering invariant?

Idea: We will put the new element at the bottom-right node anyway and
fix what is broken. To understand how we might fix the tree, we will look at
an example below (the labels inside the nodes are their priorities).

7

5

1 4

3

2 9

7

5

1 4

9

2 3

9

5

1 4

7

2 3

On the left-most panel, we add 9 to an existing heap at the bottom-right
position. Placing that 9 there violates the heap ordering property because
9 is larger 3, which at the moment is the parent of 9. We can easily fix this:
swap 9 and 3. The resulting tree is shown in the middle figure. Still, the heap
ordering property remains violated—9 is bigger than 7, which is 9’s parent.
Once again, we swap them, resulting in the tree on the right. At this point,
we have fully restored the heap ordering invariant.

In general, notice that we can only violate the heap ordering invariant
where the new element is, and as we exchange the new item and its current
parent, it “swims” up the tree, potentially creating another location where the
invariant is violated. However, because the tree is untouched anywhere else,
the violation is contained locally. We summarize this process as follows.

Promotion in a binary heap: As the priority of a node becomes larger than
its parent’s priority, we can fix this in a few simple steps, as outlined by the
pseudocode below:

def swim(k):
while not is_root(k) and p(parent_of(k)) < p(k):

swap(parent_of(k), k)
k = parent_of(k)

removeMax: Deleting The Maximum Element

We know already that the max element lives at the top of the tree (i.e., the
root). To delete the maximum element, we will remove the item at the root,
but then, we will also need to fix up the tree—if we simply remove the root,
what is left is not really a tree. To fix this, we can take hints from the heap
invariants: because the shape of the tree is completely determined by its size,
we know what the tree must look like after we are done—exactly like before
except with the bottom-right node removed.

Idea: Take the node at the bottom-right, place it in place of the root (which
we wish to delete), and fix what is broken.

Similar to the insertion case, we check if the node we place at the top
violates the heap ordering—if it does, we swap it with the larger of its two
children, causing this node to “sink” down the tree. Heap-ordering violation
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9

5

1 4

7

2 3

3

5

1 4

7

2 ×

7

5

1 4

3

2 ×

may still take place, and if it does, it will follow where we sent the new root
down. But this eventually has to stop because it will sink to the bottom of
the tree or stop if the violation has all been eliminated. We summarize this
process as follows.

Demotion in a binary heap: As the priority of a node becomes smaller than
one or both of its children’s priorities, we can fix this in a few simple steps, as
outlined by the pseudocode below:

def sink(k):
while not is_leaf(k):

max_child = the child of k having a larger priority
if p(k) >= p(max_child): break
swap(k, max_child)
k = max_child

Quick Note on Running Time

We cannot yet talk about the actual running time because we have not speci-
fied how the tree is to be represented. But it is worth pointing out that for add
and removeMax, the cost, in the worst case, is proportional to the number of
levels that the tree has (i.e., we have to go the whole length of the path from
top to bottom or vice versa). Hence, if the heap tree is d-level deep, add and
removeMax will each cost O(d) time.

9.5 Storing The Binary Heap Tree In An Array

How can we economically and efficiently store the binary heap tree? It turns
out the binary heap tree invariants give us an elegant way of mapping the
tree’s nodes into locations in an array.

Recursive Label Mapping.
The left and right children of a
node at location k are at
locations 2k and 2k+ 1,
respectively.

k

2k 2k+ 1

To define this mapping, we will label nodes in level order. That is to say,
the root at the top of the tree is associated with location 1, and we recursively
define the mapping as follows:

If a node is associated with location k, its left child is at location
2k and its right child is at 2k+ 1.

This relationship allows easy navigation between nodes as indicated by the
following code:

int parentOf(int k) { return k/2; }
int leftOf(int k) { return 2*k; }
int rightOf(int k) { return 2*k + 1;}
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This means the following tree shape is mapped onto an array using the
number next to each node, and hence the keys are stored in the array as shown
on the right:

9
1

7
2

4
4

6
5

8
3

5
6

index 0 1 2 3 4 5 6
entries ∅ 9 7 8 4 6 5

Tree Depth. The deepest
node is at location n and the
root is at location 1. Now the

parent of n is at location bn/2c,
whose parent is at location
bbn/2c/2c. Repeating this

argument gives that the depth
of the tree is at most log2(n).

One thing falls out nicely from this discussion. Using the parent function
and noticing the node with the largest index has index n, we can find the
depth of any binary heap tree on n nodes.

Lemma 9.2. A heap tree with n nodes can be at most log2(n) deep.

Implementation in Java

We define a class BinaryHeap that has a generic type parameter T; however,
this type parameter needs to be constrained so that elements of this type can
always be compared, like so:

public class BinaryHeap<T extends Comparable<? super T>>
implements PriorityQueue<T>

Instead of implementing a resizable array ourselves, we resort to Java’s
built-in ArrayList to store our binary heap tree’s elements. Hence, we store
our elements and initialize it as follows:

private List<T> entries; // a resizable array for elements

public BinaryHeap() {
entries=new ArrayList<>();
entries.add(null); // dummy value

}

It helps to define a number of utility methods to help with navigation and
simplifying code:

public int size() { return entries.size()-1; }
public boolean isEmpty() { return 0==size(); }

private void swp(int i, int j) {
Collections.swap(entries, i, j);

}
private int compare(int i, int j) {

return entries.get(i).compareTo(entries.get(j));
}

findMax. With this setup in place, finding the maximum element is simple:
public T findMax() { return entries.get(1); }
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add and removeMax. The main workhorse for add is the swim maneuver:

private void swim(int l) {
while (l > 1 && compare(parentOf(l), l)<0) {

swp(parentOf(l), l);
l = parentOf(l);

}
}

With it, the add operation consists simply of appending a new element and
invoking swim, like so:

public void add(T e) {
entries.add(e);
swim(this.size());

}

For removeMax, the main workhorse is the sink maneuver:

private int maxIndex(int l) {
int maxDex = leftOf(l), n = this.size();
if (rightOf(l) <= n &&

compare(maxDex, rightOf(l)) < 0) { maxDex = rightOf(l); }
return maxDex;

}

private void sink(int l) {
int n = this.size();
while (leftOf(l) <= n) { // not yet a leaf

int maxDex = maxIndex(l);
if (compare(l, maxDex) >= 0) { break; }
swp(l, maxDex);
l = maxDex;

}
}

With the heavy lifting done by sink, removeMax is straightforward:

public void removeMax() {
T lastElt = entries.remove(this.size());
if (!isEmpty()) {

entries.set(1, lastElt);
sink(1);

}
}

Altogether, this is a rudimentary implementation of the binary heap data
structure, where findMax takesO(1) time, and both add and removeMax require
O(logn) time. The data structure uses O(n) space.

Java’s Built-In PriorityQueue

Java has a built-in PriorityQueue implementation. The class is called
PriorityQueue, which is part of java.util.PriorityQueue. Unlike ours,
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Java’s implementation uses a minimum-oriented binary heap. See the docu-
mentation for details. For most users and applications, this is the implemen-
tation to use. It is convenient and robust, and plays nicely with other Java
features. Only rarely will we need to write our own priority queue.

9.6 Application: Heap Sort

We have seen several sorting algorithms so far. One direct application of the
PriorityQueue is sorting. After a quick moment of thought, we can see that if
we manage to add all the elements that we wish to sort to a priority queue,
removing the maximum the first time will yield the largest element. Doing so
the second time will yield the second largest element, and so on. This leads to
the following code (we omit the template declaration for type T for improved
readability):

Code 9.4: Basic Heap Sort.

 void heapSort(T[] a) {
 PriorityQueue<T> pq = new BinaryHeap<>();
 for (T elt: a) { pq.add(elt); }
 for (int k=a.length-1;k>=0;k--) {
 a[k] = pq.findMax();
 pq.removeMax();
 }
 }

In this code, the first for loop adds all the elements to the priority queue.
For an input array of length n, this means calling add a total of n times,
requiring O(n logn) time overall. The other for loop pulls out the current
maximum one by one. Because there are n elements, this loop also runs for n
iterations. Thus, this loop takes O(n logn) time. In total, this algorithm runs
in O(n logn) time, which matches the running time of the best comparison-
based sorting algorithms we have looked at earlier.

Yet we can, as it turns out, make the first loop faster: although this will not
improve the overall asymptotic running time, it is possible in O(n) time to
build a binary heap tree with n elements starting from empty and this does
translate to improved performance in practice.

Building The Heap Faster

From an empty binary heap tree, the current method builds the heap by
adding the elements one by one, requiring a swim operation, which takes
O(logn), per addition. The improved buildHeap algorithm will put in all the
elements at once and repair the ordering afterwards. To reflect this, we are
adding a constructor that takes an array of elements as shown in Code 9.5.

How can we ensure that the heap is properly ordered? The trick is to run sink on
every possible node in the binary heap tree from the bottom. It is important
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Code 9.5: Alternative binary heap constructor

 public BinaryHeap(T[] initArray) {
 this(); // initialize the heap as usual
 for (T elt: initArray) { entries.add(elt); }
 buildHeap();
 }

to start from the bottom and work our way back up to the root because
correctness crucially depends on being able to guarantee that before sink is
called on the node at location k, every node beneath it already respects the
heap ordering. Hence, we have the following code:

private void buildHeap() {
int n = this.size();
for (int k=n/2;k>=1;k--) { sink(k); }

}

Notice that location bn/2c is the bottom-most node with at least one child;
the sink operation has no effects on any locations beyond that.

This construction helps improve the running time because each sink op-
eration pushes its value down towards a leaf beneath it, so about 50% of the
nodes are one step away from the leaves and cost 1 “push” (compared to
about logn steps required in a comparable add and its corresponding swim
operation). The next 25% of the nodes approximately are two steps away from
the leaves and cost 2 “pushes,” and so on. More precisely, a sink called at
location k will consider locations 20 · k, 21 · k, 22 · k, 23 · k, . . . until 2t · k > n.
This means a running time of O(log(n/k)) for that sink call. Hence, the total
running time of buildHeap is

bn/2c∑
k=1

log
(n
k

)
= O(n) (9.1)

(Exercise 9.6. will prove this relationship concretely.)

We conclude that buildHeap takes O(n) time and hence, our new construc-
tor takes O(n) time overall. This means our heap sort can be upgraded to
take O(n) +O(n logn) = O(n logn) time.

Exercises

Exercise 9.1. A number means adding that number to the priority queue and
a $ means finding and removing the maximum. Give the sequence of values
returned by the executing the following sequence:

11, 17, 44, $, 34, 14, $, 33, 42, 3, $, 37, $, $, 1,
$, 5, $
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Exercise 9.2. Draw the shape (i.e., without the actual data) of the binary heap
tree on n = 19 keys.

Exercise 9.3. Draw all possible binary heap trees on the set of keys
{h, e, a, p, i, y}. How would each of the tree you have drawn map to an ar-
ray representation?

Exercise 9.4. A student came up with the following idea for a priority queue
implementation: we only need to keep the maximum number we have seen so
far and update it as new numbers are added. This way add will takeO(1) time
and so is findMax. Hence, it is possible to support priority queue operations all
in constant time and space. Criticize whether this implementation is feasible.

Exercise 9.5. Write out a proof of Lemma 9.2 in detail.

Exercise 9.6. Prove Equation (9.1). (Hint: There are about n/4 values of k
between n/4 and n/2 and for these values of k, log(n/k) 6 log 4. Continuing
this argument gives

bn/2c∑
k=1

log2(n/k) = O

logn∑
`=1

n

2`
· `

 .

It should not be too difficult to argue that this summation converges to O(n)
even if `→∞. )

Exercise 9.7. How would you implement a stack using the priority queue as
the underlying data structure? How about a (FIFO) queue?

Exercise 9.8. In a maximum-oriented binary heap tree (as discussed in this
chapter), where can we find the minimum-priority element? If, in addition to
the current operations, we wish to add support for findMin, what is the best
running time we can obtain using a maximum-oriented binary heap tree?

Exercise 9.9. The motivating example at the beginning of the chapter seeks
to maintain the smallest k numbers from a long list of numbers. Update
the example Java implementation to use the built-in Java’s PriorityQueue to
keep the running time per new number to O(logk). When you complete this
exercise, the overall running time should be improved to O(n logk).

Exercise 9.10. You have k LinkedList<Integer> instances, each of which is
ordered from small to large, though there may be duplicates. Your goal is to
merge these lists to create a combined sorted list. Using a suitable priority
queue data structure, you will implement a function

LinkedList<Integer> mergeAll(LinkedList<Integer>[] lists)

that takes an array of LinkedList<Integer>’s and returns a
LinkedList<Integer> that is the combined list in sorted order (small
to large).
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Your algorithm must run in O(N logk), where N is the sum of the list
lengths and k = lists.length. Keep in mind, accessing (i.e., reading from or
writing to) a linked list is cheap at the front and the back of the list; however,
accessing it anywhere else is generally expensive. The cost is proportional to
how far it is from the end.

Chapter Notes

The priority queue ADT described here has many possible efficient im-
plementations. The binary heap data structure was invented by J.W.J.
Williams [Wil64] to implement a sorting algorithm known as heap sort. The
more efficient O(n)-time heap-building technique described in this chapter is
due to Floyd [Flo64]. There are faster implementations and implementations
with different time-complexity tradeoffs. Examples include the binomial heap
and Fibonacci heap; see, for example, Cormen et al. [Cor+09] for further detail.
Using a different design, priority queues such as the leftist heap can be quickly
merged, for example, in logarithmic time. For special types of keys, faster
implementations are possible. An example is the van Emde Boas priority
queue [Boa77] for integer-only keys.
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