
“book-main” — 2021/11/24 — 22:10 — page 139 — #151

Sorting 8
Sorting. How should we
rearrange a given array of
numbers so they appear from
small to large in the fastest
time possible? This question is
fundamental to computing and
has far-reaching applications.
For example, after sorting,
similar items will be close
together in the array, allowing
for easy duplicate removal or
finding similar items.

In this chapter, we will study sorting—how to arrange a given sequence in
a certain order, e.g., from small to large. For a concrete example, consider the
following array of numbers:

s = [54, 26, 93, 17, 77, 31, 44, 55, 20]

We want an efficient means to create a sorted version of this array, producing

t = [17, 20, 26, 31, 44, 54, 55, 77, 93]

The numbers in the resulting array are arranged from small to large, and we
term this process sorting. In general, we want to sort generic objects, not
just integers. The most common ordering is based on numerical order (i.e.,
ordering them according to some numerical value), lexicographical order (i.e.,
ordering them like in a dictionary), or some combination of them—although
the users can specify custom ordering to suit their needs.

We will start by modeling in Java how two objects can be compared. Based
on this, we set out to test whether a given sequence is already sorted from
small to large. This computation turns out to inspire a natural sorting algo-
rithm, bubble sort. Following that, we will explore other sorting algorithms.
The simpler sorting algorithms appear to all have O(n2) running time, but
it is possible to break this quadratic running time bound. In the final sec-
tions of this chapter, we will look at faster algorithms that run in O(n logn)
time—merge sort and quicksort—both divide-and-conquer algorithms

8.1 Rules of The Game

Sorting algorithms described in this chapter are known as comparison-based
sorting algorithms because they rely on the premise that we can compare two
objects x and y and know whether x < y, x == y, or x > y. For example, we
can compare any two integers and determine their relative ordering in this
fashion. So could we compare any two Strings.

For example, if T is such that
T extends Comparable<T>,
we can implement a function
boolean less(T x, T y) that
tests whether x < y as follows:
return x.compareTo(y) < 0;

But we cannot always meaningfully compare any two objects. To require
that the objects can be compared, we work with an interface called Comparable,
which offers a comparison function. In particular, the sorting algorithms in
this chapter assume a data type T such that T extends Comparable<T>. Such
a data type has the following property: x.compareTo(y) returns an int with
one of the following outcomes:

139

“book-main” — 2021/11/24 — 22:10 — page 140 — #152

140 CHAP 8: SORTING

• a positive value (> 0) means x > y.

• zero (= 0) means x == y.

• a negative value (< 0) means x < y.

For sorting to be well-defined, we implicitly assume that the objects and
the comparison function form a total order. This is a mathematical property
asserting that for all x,y, z, (i) if x 6 y and y 6 x, then x = y; (ii) if x 6 y and
y 6 z, then x 6 z; and (iii) it holds that x 6 y or y 6 x. Readers are invited to
check that these properties hold for integers and strings.

To avoid having to declare the type bounds too often, we will implement
functions (i.e., methods) in this chapter inside the following class declaration:

public class Sorting<T extends Comparable<T>>

which makes T inside the class to be T extends Comparable<T>. Hence, inside
this class, any object of such type T is guaranteed to have a .compareTo as
discussed earlier.

To exchange a[i] and a[j] in
a Java array:

T temp = a[i];

a[i] = a[j];

a[j] = temp;

We also define a utility function void swap(T[] a, int i, int j) inside
this class. This function exchanges the contents of a[i] a[j], as shown next
to this paragraph.

Testing for Sortedness

As a quick example to demonstrate the setup, as well as to motivate how
sorting algorithms are designed, we ask, how can one write a program to
check whether a given array of objects is already sorted from small to large?
We will write a function

boolean isSorted(T[] a)

which takes as input an array of type T elements and returns a Boolean
indicating whether a is already sorted from small to large.

The idea to solve this problem is a simple one: check if all adjacent elements
are in the right order (i.e., a[i] <= a[i+1]). If the array is already sorted,
every adjacent pair will be in the right order. To make such comparisons, we
will resort to .compareTo as follows:

boolean isSorted(T[] a) {
int n = a.length;
for (int i=0;i<n-1;i++) {

if (a[i].compareTo(a[i+1]) > 0)
return false; // found an offending pair

}
return true; // sorted! no offending pairs

}

Note that in this code, if the pair a[i] and a[i+1] is in the right order, we
expect a[i].compareTo(a[i+1]) <= 0. A violation is, therefore, the opposite—
hence, we check if a[i].compareTo(a[i+1]) > 0.

Example. It helps to step through the execution of isSorted on concrete
inputs. If we run isSorted on the array s from the beginning of the
chapter, the code will find an “offending pair” at i=0 and it quits after

“book-main” — 2021/11/24 — 22:10 — page 141 — #153

§8.2 Bubble Sort 141

the first pair. On the other hand, if we run it on the array t also from
the beginning of the chapter, the for-loop will progress till completion
without finding any out-of-whack pair and the code returns true.

8.2 Bubble Sort

The first sorting algorithm we will look at is a simple one. Example: One Pass. Below
shows the first pass through
the sequence s from the
beginning of the chapter:

54 26 93 17 77 31 44 55 20

26 54 93 17 77 31 44 55 20

26 54 93 17 77 31 44 55 20

26 54 17 77 31 44 55 93 20

26 54 17 77 31 44 55 20 93

To motivate it,
think back to our algorithm for testing if a given array is already sorted. If the
array is not sorted, the code will find an adjacent pair where a[i] > a[i+1].
We can fix this by swapping them. Although it is unclear a priori if this will
help anything overall, it is intuitively clear that it fixes one violation.

Building on this idea, the bubble sort algorithm makes passes over the
input sequence. In each pass, it compares adjacent elements and swaps them
if they are out of order. We know the sequence is sorted when we are not
making any more swaps. However, it is less clear how many passes will be
needed or whether this idea will lead to a sorted sequence eventually.

In our example, after one pass, the largest element (93) is already in the
right location. This is not coincidental. In general, an important observation
is that for each pass through the sequence, the next largest value will be in
the proper spot. In fact, we can say that each element floats, or “bubbles”,
up to the correct location. This leads to the invariant that after r = 0, 1, 2, . . .
passes, the (r+ 1) rightmost spots store the (r+ 1) largest elements of the
whole sequence. We illustrate this observation below, where the sequence
after each pass is shown and the (r+ 1) largest elements are shaded:

54 26 93 17 77 31 44 55 20 initial

26 54 17 77 31 44 55 20 93 after r = 0

26 17 54 31 44 55 20 77 93 after r = 1

17 26 31 44 54 20 55 77 93 after r = 2

17 20 26 31 44 54 55 77 93 after r = 7

How many passes through the sequence are necessary then? It is easy to see that
at most n− 1 passes are needed. More specifically, after n− 1 passes, our
invariant guarantees that the (n− 1) largest elements are in the right places.
But then, this means that one last element has nowhere else to be but to be in
the right spot as well.

(n− 1) + (n− 2) + · · ·+ 1

= O(n2)

Turning this into code is straightforward, as shown in Code 8.1. Further-
more, since pass r takes O(n− r) time and the code performs at most n− 1
passes, the running time isO(n2). As an optimization, we could stop the code
as soon as the algorithm makes no swaps during a pass.

“book-main” — 2021/11/24 — 22:10 — page 142 — #154

142 CHAP 8: SORTING

Code 8.1: Bubble Sort.

1 void bubbleSort(T[] a) {
2 int n = a.length;
3 for (int r=0;r<n-1;r++) {
4 for (int i=0;i<n-r-1;i++) {
5 if (a[i+1].compareTo(a[i]) < 0)
6 swap(a, i, i+1);
7 }
8 }
9 }

8.3 Insertion Sort

We will now look at another implementation that is equally intuitive. Insertion
sort builds the sorted sequence one at a time. It rests on the following idea—
inserting a new item into an already-sorted sequence to keep it sorted involves
just two easy steps:

1. Locate where the new element should be; and

2. Make room for the new element by moving/rearranging the existing
sequence.

As an example, consider the following example, in which 2 is being inserted
into an already-sorted sequence.

1 4 7 2

To know that the number 2 has to go between 1 and 4, the algorithm can
simply scan the sequence from the right end until a snug-fit spot is found.
More generally, if x is the new element, we are looking for a position where
the value of x is between the value to the left and the value to the right. It is
possible that x has nothing to the left because it is the smallest element so far
or that x has nothing to the right because it is the largest element so far.

Insertion Sort. At a glance,
insertion sort performs the

following steps in each iteration:

sorted

"insert" the next element and
extend the sorted portion

In terms of running time, this process alone could take linear time in the
worst-case, having to look through the whole sequence. More sophisticated
algorithms (e.g., binary search) can reduce the running time. But this is often
not useful because in the common representation of a standard array, the next
step of making room for the new element requires linear time nonetheless.

A standard implementation works directly on the input array or a copy
of it. This is convenient because for each iteration i = 1, 2, . . . ,n − 1, the
invariant at the end of that iteration is that

The elements a[0], a[1], ..., a[i] are the correct sorted
arrangement of the first i+1 elements.

Hence, the role of iteration i is to insert the value of a[i] into an already-
sorted sequence a[0], a[1], ..., a[i-1].

We illustrate the working of the insertion sort algorithm below. The ele-
ments shaded in gray are those the invariants guarantee to be sorted already.

“book-main” — 2021/11/24 — 22:10 — page 143 — #155

§8.3 Insertion Sort 143

Code 8.2: Insertion Sort.

1 void insertionSort(T a[]) {
2 int n = a.length;
3 for (int i=1;i<n;i++) {
4 // invariant: a[0]...a[i-1] is sorted
5 T elt = a[i];
6 int j=i;
7 while (j>0 && elt.compareTo(a[j-1]) < 0) {
8 a[j] = a[j-1];
9 j--;

10 }
11 a[j] = elt;
12 // invariant: a[0]...a[i] is sorted
13 }
14 }

Notice that the iteration number i is also the demarcating point between the
sorted portion of the array and the unprocessed elements.

54 26 93 17 77 31 44 55 20 initial

54 26 93 17 77 31 44 55 20 i = 1

26 54 93 17 77 31 44 55 20 i = 2

26 54 93 17 77 31 44 55 20 i = 3

17 26 54 93 77 31 44 55 20 i = 4

17 26 31 44 54 55 77 93 20 i = 8

It may appear that we will need two separate passes—one to locate where
the new element will be and the other to rearrange the elements. Rather neatly,
they can be combined into one. If elt is the new element being inserted,
the fact that an element a[j] > elt means that a[j] should be moved one
position to the right. In this way, we can simultaneously find the right spot
for elt and shift the elements to make room for it. Turning this into code
is straightforward, as shown in Code 8.2. Because each iteration i takes
O(i) time in the worst case, the worst-case running time of insertion sort is

O
(∑n−1

k=1 k
)
= O(n2). This makes it another algorithm, alongside bubble

sort, that requires quadratic time in the worst case.

“book-main” — 2021/11/24 — 22:10 — page 144 — #156

144 CHAP 8: SORTING

Code 8.3: Selection Sort.

1 void selectionSort(T a[]) {
2 int n = a.length;
3 for (int i=0;i<n;i++) {
4 // invariant: a[0]...a[i-1] are the i smallest elements
5 int minDex=i;
6 for (int j=i+1;j<n;j++)
7 if (a[j].compareTo(a[minDex]) < 0)
8 minDex=j;
9 if (minDex!=i)

10 swap(a,minDex,i);
11 // invariant: a[0]...a[i] are the i+1 smallest elements
12 }
13 }

8.4 Selection Sort

This time we will briefly look at another sorting algorithm that, like insertion
sort, builds the sorted sequence one at a time. In a typical implementation,
like insertion sort, it maintains a sorted portion of the sequence and an un-
processed portion. However, unlike insertion sort, it uses a different idea to
grow the sorted portion—selecting the smallest item from the unprocessed
portion to add to the sorted portion. In this sense, selection sort can be seen
as carrying out the following steps:

• first, find the minimum element; call this e0

• then, find the minimum element after excluding e0; call this e1

• then, find the minimum element after excluding e0 and e1; call this e2;
• and so on.
A standard implementation works directly on the input array or a copy

of it. For each iteration i = 0, 1, 2, . . . ,n− 1, the invariant at the end of that
iteration is that

The elements a[0], a[1], ..., a[i] are the i+ 1 smallest
elements.

Selection Sort. At a glance,
selection sort performs the

following steps in each iteration:

find the next smallest

the first i smallest items
(sorted)

Therefore, the goal of the i-th iteration is to find the smallest element from
among a[i], a[i+1], ..., a[n-1]. This is easy to implement and requires
considering n− i elements, hence taking O(n− i) time.

Code 8.3 shows an implementation of insertion sort. The inner loop finds
the index of the next smallest element, as described earlier. The index maxDex
is then swapped with i, satisfying the invariant. The overall running time is
O(
∑n−1
k=0 (n− k)) = O(

∑n
k=1 k) = O(n

2).

8.5 Breaking The Quadratic Barrier

While the sorting algorithms considered so far are intuitive and easy to imple-
ment, they all require quadratic time—aka. O(n2) time—in the worst case. It
is natural to wonder if faster algorithms are possible.

“book-main” — 2021/11/24 — 22:10 — page 145 — #157

§8.6 Merge Sort 145

To break the quadratic barrier, we now discuss a new technique. Divide
and conquer is a highly versatile technique that generally lends itself well to
the design of fast algorithms. We have already seen the divide-and-conquer
technique many times without knowing its name. This time we’ll give the
technique a label and look at a few examples.

Divide and Conquer. To solve
a problem foo on a instance of
size n, a divide-and-conquer
process (schematically
depicted below) divides the
instance into smaller instance
of sizes n1,n2, . . . ,nk, where
k is typically at least 2,
recursively solves each of
these pieces, and combines
their results into the solution to
the original problem of size n:

foo(n1)

foo(n2)

foo(nk)

DIVIDE COMBINE

The structure of a divide-and-conquer algorithm follows the structure of a
proof by (strong) induction. This makes it easy to show correctness and also
to figure out the running time. The general structure looks as follows:

— Base Case: When the problem is sufficiently small, we return the trivial
answer directly or resort to a different, usually simpler, algorithm, which
works great on small instances.

— Inductive Step: First, the algorithm divides the current instance I into
parts, commonly referred to as subproblems, each smaller than the orig-
inal problem. Then, it recurses on each of the parts to obtain answers
for the parts. In proof, this is where we assume inductively that the
answers for these parts are correct. Finally, based on this assumption, it
combines the answers to produce an answer for the original instance I.

So far, this process is identical to what we have seen as our recipe for
designing recursive algorithms. The signature of divide-and-conquer algo-
rithms is that we attempt to make each part a sizable fraction of the current
problem—not just one smaller or a constant smaller.

8.6 Merge Sort

Almost invariably, the main idea in reducing the time complexity so far has
been to aggressively reduce the problem size: whereas both insertion sort
and bubble sort, in essence, reduce the problem size by 1, we wish to do
better, perhaps cutting the size down in half—like we did for powering bw.
Following that pattern, we will attempt to write a recursive algorithm that
splits a given sequence in half.

The earliest variant of merge sort dated back to 1945 and is often attributed
to John von Neumann. To reconstruct merge sort using the divide-and-
conquer strategy, two questions need to be answered:
(Q1) How to solve small instances? As with our previous problems, we

measure the size of the input by the length of the input sequence.
Do we know how to sort an empty sequence and a sequence of length 1? This
should be easy. Both the empty sequence and a sequence of length 1 are
already sorted. Hence, we can simply return the input sequence.

(Q2) How to tackle an instance in terms of smaller instances? Say, inside
the call where the input has length n, we already know how to sort
any input sequence of length less than n. How can we use this to our
advantage?
Let’s break the input sequence into two (roughly) equal-sized
sequences—left and right—at midpoint.
Furthermore, both these sequences are shorter than n, in fact, just half
of that. Hence, we could call ourselves recursively on both of them,
yielding a sorted copy of left and right, respectively.

“book-main” — 2021/11/24 — 22:10 — page 146 — #158

146 CHAP 8: SORTING

What we would like to do is to combine these two sorted sequences
into a single one that is sorted. We hope to be able to do this efficiently.
The logic for merging two such sorted sequences will be captured by a
mergeInto function.

Pictorially, we have a situation such as in Figure 8.1. Notice that our job is
not yet over—we have two sorted sequences and we need to merge them into
a single fully-sorted sequence.

54 26 93 17 77 31 44 55 20T[] a

54 26 93 17

left

77 31 44 55 20

right

recursively
solved

recursively
solved

17 26 54 93

sorted left sorted right

20 31 44 55 77

Figure 8.1: Merge sort—divide and recurse, but how to merge?

In code, our discussion so far can be summed up as follows. To avoid a
dark corner of Java concerning generic arrays, we opt to use a destination-
passing style, where we offer each function a space to write into rather than
relying on it to allocate the space where the result is returned.

Code 8.4: Merge Sort (Main Function)

1 void mergeSort(T[] a) {
2 int n = a.length;
3 if (n <= 1) return ; // a is already sorted
4

5 T[] left = Arrays.copyOfRange(a, 0, n/2);
6 T[] right = Arrays.copyOfRange(a, n/2, n);
7

8 mergeSort(left);
9 mergeSort(right);

10 mergeInto(left, right, a);
11 }

From this code, each call on an array of length n makes two calls recur-
sively on arrays of length n/2. Let TmergeInto(x,y) denote the running time
of mergeInto on array sizes x and y, and it is evident that the running time
recurrence for merge sort is

T(n) = 2T(n/2) +O(n) + TmergeInto(n/2,n/2),

“book-main” — 2021/11/24 — 22:10 — page 147 — #159

§8.6 Merge Sort 147

where T(0) = T(1) = O(1), and the O(n) term comes from allocating and
copying the left and right arrays. The last piece of our puzzle is therefore
the merging of two sorted arrays.

Merging Sorted Arrays

Example. Consider merging
a=[17, 26, 54, 93] and
b=[20, 31, 44, 55, 77].

Initially
a=[17, 26, 54, 93]
b=[20, 31, 44, 55, 77]
out=[]

Iteration #1:
a=[26, 54, 93]
b=[20, 31, 44, 55, 77]
out=[17]

Iteration #2:
a=[26, 54, 93]
b=[31, 44, 55, 77]
out=[17, 20]

Iteration #3:
a=[54, 93]
b=[31, 44, 55, 77]
out=[17, 20, 26]

Iteration #4:
a=[54, 93]
b=[44, 55, 77]
out=[17, 20, 26, 31]

Iteration #5:
a=[54, 93]
b=[55, 77]
out=[17, 20, 26, 31, 44]

...

Final:
a=[]
b=[]
out=[17,20,26,31,44,54,55,77,93]

Because the two arrays that we are merging are already sorted, we can “peel
off” the front of either array, whichever is smaller. To implement this, we keep
two fingers, one on each array, pointing to the first index we have not peeled
off. We compare the elements where the fingers are pointing and peel off the
smaller one. Eventually, one array will be empty. When we reach this point,
we will simply copy the elements from the remaining nonempty array into
the output.

Code 8.5 (below) is an implementation of this idea. The mergeInto will
read from sorted arrays a[] and b[], and write the merged sequence to out.
The fingers into a and b are i and j, respectively.

Code 8.5: Merging Two Sorted Arrays

1 void mergeInto(T[] a, T[] b, T[] out) {
2 int i = 0, j = 0;
3 for (int o=0;o<out.length;o++) {
4 if (i >= a.length)
5 out[o] = b[j++];
6 else if (j >= b.length)
7 out[o] = a[i++];
8 else if (a[i].compareTo(b[j]) < 0)
9 out[o] = a[i++];

10 else
11 out[o] = b[j++];
12 }
13 }

Since the length of the output array is the sum of the lengths of the input
arrays, this code runs in time O(n+m), where n is the length of a andm is
the length of b. Notice that each iteration of the for-loop takes constant time.

Running Time Analysis

We have previously established that merge sort takes constant time on arrays
of length at most 1, and for n > 1, the recurrence is

T(n) = 2T(n/2) +O(n) + TmergeInto(n/2,n/2).

Together with our analysis of mergeInto, the recurrence becomes

T(n) = 2T(n/2) +O(n),

“book-main” — 2021/11/24 — 22:10 — page 148 — #160

148 CHAP 8: SORTING

since mergeInto takes time O(n/2 + n/2) = O(n). This is a standard re-
currence, which solves to O(n logn). In conclusion, we have broken the
quadratic barrier: merge sort runs in O(n logn), a marked improvement over
the algorithms discussed earlier in the chapter.

8.7 Quicksort

Quicksort, invented by Tony Hoare in 1956, is another divide-and-conquer
algorithm. Compared to merge sort, which has a simple divide step at the
expense of a nontrivial combine step, quicksort is an algorithm with a trivial
combine step perhaps at the cost of a more complex divide step.

We will aim for an extremely simple combine strategy: If the recursive
solutions are X and Y, we want to simply concatenate them.

def qsort(A):
if len(A) <= 1:

return A
do something to derive X, Y
return X + Y

Input: A

Small Portion Large Portion

qsort() qsort()

What strategy could we use to divide up the problem that will satisfy this require-
ment? Because we wish to simply concatenate the parts, this dictates what
the parts have to look like relatively to each other. Importantly, each element
in Xmust be less than every element in Y.

Split At a Pivot Value. One way to satisfy the requirements above is the
following simple idea: Pick a value called the pivot p, and split the input
sequence A into three parts:

• lt — elements that are strictly less than p;
• eq — elements that are exactly p; and
• gt — elements that are strictly greater than p.

The eq part is there for reasons that will soon be apparent. We can quickly
implement this using Java’s support for variable-sized arrays (e.g., ArrayList).
Again, we will continue to use the destination-passing style.

Code 8.6: Splitting at a pivot value.

1 void splitInto(List<T> a, T p,
2 List<T> lt, List<T> eq, List<T> gt) {
3 for (T elt : a) {
4 int cmp = elt.compareTo(p);
5 if (cmp < 0) { lt.add(elt); }
6 else if (cmp == 0) { eq.add(elt); }
7 else { gt.add(elt); }
8 }
9 }

It is clear that splitInto runs in O(n) time, where n is the length of the
sequence a.

“book-main” — 2021/11/24 — 22:10 — page 149 — #161

§8.7 Quicksort 149

Good Pivot? Observant readers may already notice that as long as the pivot
comes from an element of the input array, each of lt and gt is guaranteed
to be shorter than the input itself. However, as it turns out, the pivot choice
crucially determines the performance of quick sort. For starters, we will
use a naïve strategy of using the front element as the pivot, resulting in the
following code:

Code 8.7: Quicksort Using the First Element as Pivots.

1 void qsort(List<T> a) {
2 if (a.size() <= 1) return ;
3

4 List<T> lt = new ArrayList<>(),
5 eq = new ArrayList<>(),
6 gt = new ArrayList<>();
7

8 T p = a.get(0);
9 splitInto(a, p, lt, eq, gt);

10

11 qsort(lt); qsort(gt);
12

13 // clear a & concatenate them all
14 a.clear();
15 a.addAll(lt); a.addAll(eq); a.addAll(gt);
16 }

This attempt at writing quicksort was a success in that the algorithm
correctly sorts a given input sequence; however, from a performance point of
view, it is not great. To see this, we will write a recurrence for the algorithm:

T(0) = T(1) = 1

T(n) = T(nlt) + T(ngt) +O(n),

where nlt = len(lt) and ngt = len(gt).
If nlt and ngt were about n/2, the recurrence would solve to O(n logn), as

desired. However, this is not always the case. It is not too hard to convince
ourselves that if the input is already sorted, e.g., a = {1, 2, 3, 4, 5}. This
implementation will suffer because each time it divides the list into lt={},
eq = {1}, and gt being the rest, resulting in T(n) = T(n− 1) +O(n), which
is an O(n2) algorithm.

How can we fix this problem? Various strategies for picking pivots can be
tried. Use the last element? Use the middle element? Use the median of first,
middle, and last? Indeed, they have been extensively studied. But as it stands,
no matter which fixed position we deterministically choose the pivot to be, an
adversary can force our hands so this algorithm runs slowly.

An effective—yet extremely simple—strategy turns out to be to pick the
pivot uniformly at random from the input array. In a way, by making random
choices, the adversary cannot know ahead of time which pivots we are using,
so it cannot construct an example that is truly bad for our code.

“book-main” — 2021/11/24 — 22:10 — page 150 — #162

150 CHAP 8: SORTING

Randomized Quicksort

We will write code to pick the pivot randomly from the input sequence.
But how can we make random choices? For this, we will need help from a
random-number generator (RNG), which most languages provide.

Java offers a random-number generator class java.util.Random. An in-
stance of the class only needs to be created once and can be used multiple
times. The best practice is therefore to declare such an instance as a member
variable, like so:

Random RNG = new Random(); // declared as a member variable

Inside the quicksort code, the only line that we will change is the line that
picks the pivot. Instead of using the pivot from a fixed index, we will replace
that line with the following code:

T p = a.get(RNG.nextInt(a.size()));

The nextInt(n) method returns a random integer between 0 and n− 1, hence
allowing this code pick the element at a random index.

This means our quicksort implementation with randomly-chosen pivots
works as depicted below:

17 34 51 68 85 1 18 35 52 69Pick a random pivot:
p = 35

17 34 1 18 51 68 85 52 69

35

lt:

eq:

gt:

qsort('''''''''''''''') qsort('''''''''''''''''''')

1 17 18 34 51 52 68 69 85Output: + +
Figure 8.2: Schematic depiction of randomized quicksort execution

How fast is this version of quicksort? We cannot fully answer this question
at this point. In Chapter 11, we will study the techniques for analyzing
this type of code and revisit this algorithm in Section 11.5. For intuition,
notice that in reality, the split is unlikely to be perfect 50:50; however, it
cannot be so uneven, either. Overall, the behavior is not too far off from
T(n) = 2T(n/2) +O(n), so randomized quicksort runs in O(n logn) time
under some notion of probabilistic time.

8.8 Java Built-in Sorting

Java, as with most modern languages, has built-in capabilities for sorting an
array/collection. We will discuss the following two utility functions:

• Collections.sort for sorting a collection such as an ArrayList.
• Arrays.sort for sorting a primitive array.

Readers are recommended to visit the Java documentation for the detail of
these functions. For now, a few quick examples are in order.

“book-main” — 2021/11/24 — 22:10 — page 151 — #163

§8.9 Applications: Sort/Merge-Inspired Algorithms 151

Example. If we have an array int[] a, we can sort it like so:

int[] a = {3, 5, 1, 9, 8};
Arrays.sort(a);

If we have an ArrayList<Integer> (which is a collection), we can sort it
like this:

ArrayList<Integer> a = new ArrayList<>(List.of(3, 5, 1, 9, 8));
Collections.sort(a);

Sorting By a Key Function. In many situations, we wish to sort a sequence
of elements according to some order other than the “natural” order. For
example, we have an array

String[] colors = { "violet", "red", "blue", "teal",
"green", "pink", "magenta", "orange" }

If we just sort it using Arrays.sort, we would get the array

{"blue", "green", "magenta", "orange", "pink",
"red", "teal", "violet"}

where the elements are lexicographically ordered.

Suppose, instead, we want to sort the colors by the length of the color name.
How can we do that? As it turns out, we could specify how we wish the data
elements to be ordered by, by giving the sort function an extra parameter—a
function for comparing a pair of elements.

Arrays.sort(colors,
(String x, String y) -> x.length() - y.length());

This extra parameter is called the Comparator. In short, the comparator of x
and y describes how we wish x and y to be compared. The function should
return −1, 0, and +1 in the same way a compareTo would.

8.9 Applications: Sort/Merge-Inspired Algorithms

Many problems do not look anything like a sorting problem at first glance.
Nonetheless, the sheer fact that the instance is sorted and in some cases, a
merge-like routine can be of great help in solving them. Here, we will look at
two examples.

Duplicate Removal

In our first example, we are given a sequence of elements (think about integers
if it helps you visualize better) and we want to produce a new sequence where
each unique element in the original sequence shows up exactly once—that is,
removing all the extra copies. The output can be in any order.

Example. If the input is [3,7,3,8,8,7,1,4,3], one possible output is
[3,7,8,1,4]. To see what we mean by duplicate removal, notice how 3
appears only once in the output even though it appears three times in
the input.

“book-main” — 2021/11/24 — 22:10 — page 152 — #164

152 CHAP 8: SORTING

Code 8.8: Duplicate removal on a comparable sequence.

1 import java.util.*;
2

3 <T extends Comparable<T>> List<T> removeDuplicate(List<T> xs) {
4 List<T> elements = new ArrayList<>(xs);
5 Collections.sort(elements);
6 List<T> out = new ArrayList<>();
7

8 T prev=null;
9 for (T elt : elements) {

10 if (!elt.equals(prev)) {
11 prev = elt;
12 out.add(elt);
13 }
14 }
15 return out;
16 }

The readers might wish to think about this for a moment. (Hint: Things
look nicer when sorted.)

One way to solve this problem is to realize the following:

The Crux: Once sorted, all copies of the same element are
next to each other.

To illustrate this observation, notice that on the example input, sorting
[3, 7, 3, 8, 8, 7, 1, 4, 3] yields [1, 3, 3, 3, 4, 7, 7, 8, 8], which
makes it easy to tease out unique elements.

Turning this idea into code is not difficult, as shown in Code 8.8. In the
code, we rely on Collections.sort to sort the sequence, but to make this all
work, the elements in the sequence have to comparable, as enforced by the
type bound T extends Comparable<T>. Chapter 12 discusses another effective
means to solve the same problem.

Intersection

We will now turn our attention to another problem. Let A and B be two
sequences. Assume for now that they individually contain no duplicates, an
assumption we can conveniently satisfy using our previous example. We
are interested in producing a sequence which is the intersection of the two
sequences—that is, an element will be there if it is in both A and B. The result
can be in any order.

Example. As a few examples:

• On input A = [1, 4, 2] and B = [7,1,9,5,2], one possible out-
put is [1, 2].

• On input A = [1, 5, 3] and B = [6, 4, 2], the output is [].

“book-main” — 2021/11/24 — 22:10 — page 153 — #165

Exercises for Chapter 8 153

Code 8.9: Count the number of common elements.

1 // Assume: a and b must be sorted ascendingly
2 int countIntersectSorted(int[] a, int[] b) {
3 int common=0, i=0, j=0;
4

5 while (i < a.length && j < b.length) {
6 if (a[i] == b[j]) { common++; i++; j++; }
7 else if (a[i] < b[j]) { i++; }
8 else { j++; } // i.e., a[i] > b[j]
9 }

10

11 return common;
12 }

In this example, we will in fact solve a slightly simpler problem: find the
number of elements in the intersection (i.e., count the number of common
elements). How to solve this problem quickly? At first glance, it has nothing
to do with sorting or merging. But one thing we notice when we wrote the
merge routine was the following:

Identical elements from different sides are compared

So, we are going to take advantage of this observation, as shown in Code 8.9.

Exercises

Exercise 8.1. Produce a visual trace of the execution of insertion sort on the
following input:

4, 2, 1, 3, 9, 8, 6, 7, 5

Exercise 8.2. Produce a visual trace of the execution of selection sort on the
following input:

4, 2, 1, 3, 9, 8, 6, 7, 5

Exercise 8.3. If the input sequence is already ordered from small to large (i.e.,
sorted), how many comparisons is insertion sort going to make? How about
bubble sort and selection sort?

Exercise 8.4. Using the fewest number of comparisons, write a program that
sorts 5 distinct integers. For concreteness, write a function

int[] sort5(int a, int b, int c, int d, int e)

that returns a length-5 array that stores a, b, c, d, e in sorted order.

“book-main” — 2021/11/24 — 22:10 — page 154 — #166

154 CHAP 8: SORTING

Exercise 8.5. Give the best- and worst- case running time of each of the
algorithms discussed in this chapter.

Exercise 8.6. Consider a quicksort implementation that always chooses the
middle element (i.e., index bn/2c). For n > 1, design a sequence of integers
that if given as input will result in quicksort taking Θ(n2).

Exercise 8.7. In a remote village known as Salaya, zombies and humans have
lived happily together for many decades. In fact, no one can quite tell zombies
and humans apart. However, when these “people” line up in a single row, all
sorts of trouble ensue, including this weird phenomenon: human beings will
line themselves up from tall to short, but zombies act erratically.

In particular, if line is an array of heights of the population of this village,
we would expect that line[i] > line[j] for i 6 j. But this simply isn’t true in
many cases especially with zombies around. Hence, one nobleman—or is he
a zombie?—came to you for help: he wants to know how many pairs of his
people violate this social norm.

Your Task: Write a function int countBad(int[] hs) that takes an array
of n numbers and returns the number of pairs 0 6 i < j < n such that
hs[i] < hs[j] (i.e., the number of pairs that violate the social norm).

For example (abusing Java’s array notation):

• countBad({35, 22, 10}) == 0

• countBad({3,1,4,2}) == 3

• countBad({5,4,11,7}) == 4

• countBad({1, 7, 22, 13, 25, 4, 10, 34, 16, 28, 19, 31}) == 49

Performance Expectations: We expect your code to run in at most
O(n logn) time, where n is the length of the input array.

(Hint: Write a merge-like algorithm that computes two things: (1) the combined
sorted sequence and (2) the number of out-of-wack pairs. Your complete solution
should look almost identical to the merge sort algorithm except it computes this
additional thing.)

Exercise 8.8. Implement merge sort that takes a Comparator<T> as an input
parameter instead of relying on .compareTo.

Exercise 8.9. Implement quicksort that takes a Comparator<T> as an input
parameter instead of relying on .compareTo.

Exercise 8.10. Let a and b be two sorted arrays of integers. Each array only
stores unique numbers. Write a function

int countUnion(int[] a, int[] b)

that computes the total number of unique integers across the two arrays (i.e.,
the size of their union).

“book-main” — 2021/11/24 — 22:10 — page 155 — #167

Notes for Chapter 8 155

Chapter Notes

As a fundamental problem in computing, sorting has undoubtedly been
extensively studied. It was tackled as early as in 1951 around the time the first
general-purpose digital computer was starting to be programmed. Simple
exchange-based algorithms such as bubble sort, insertion, and selection sort
are pretty much folklore. An information-theoretic argument can be used to
show a lower bound of Ω(n logn), meaning no comparison-based sorting
algorithms can use fewer than ∼ n logn comparisons in general [Cor+09;
KT06]. This means that algorithms of this type necessarily need at least
n logn time in general. Such time-optimal algorithms were, in fact, known
from early on. Both merge sort and quicksort can achieve O(n logn) running
time. According Donald Knuth [Knu98], merge sort was invented by John
von Neumann around 1945. Quicksort [Hoa61] was invented by Tony Hoare
in 1956, though unpublished until 1961. In general, the memory usage of a
sorting algorithm tends to be linear in the input size.

This chapter is concerned with basic implementations and analysis of
standard sorting algorithms. Various practical techniques for implementing
them are described in the literature but are beyond the scope of this chapter.
Other popular sorting algorithms include heap sort, shell sort, and tim sort.
While comparison-based sorting algorithms cannot be faster than n logn in
general, other sorting strategies can sometimes get around this lower bound,
for instance, by exploiting some special structure of the data. For example, it
is possible to sort in O(n) time an array of 0s and 1s of length n. Radix sort
and counting sort are examples of algorithms in this category. More advanced
textbooks on algorithms (e.g., [Cor+09; KT06; SW11]) describe what we study
here and more in further depth.

“book-main” — 2021/11/24 — 22:10 — page 156 — #168

