
“book-main” — 2021/11/24 — 22:10 — page 73 — #85

Stacks, Queues, and Deques 5
Stacks, Queues, and
Deques. These ubiquitous
data types are simple but
powerfully used everywhere in
a computer system. They
represent common and intuitive
data-access patterns.

In this chapter, we will explore three fundamental and widely-used data
types: stacks, queues, and double-ended queues (deques). They represent
common data-access patterns such as last-in first-out (LIFO), first-in first-out
(FIFO), and a mixture of the two. These data types show up in numerous
places, ranging from the lowest-level of software such as supporting function
calls to application software such as supporting multistep undos. Our focus
will be on how to implement and use these data types.

5.1 First-In First-Out, Last-In First-Out

Stacks, queues, and deques are fundamental data types that maintain a collec-
tion of elements supporting adding and deleting an element. The distinguish-
ing trait between these data types is which element to remove when a delete
operation is called:
A stack removes the most recently-added item, analogous to the back button

of our web browser or a pile of plates, which is meant to only be removed
from the top, making the stack a last-in first-out (LIFO) data type. The
last item to arrive is to first to depart.

A queue removes the least recently-added item, analogous to a line formed
to order food or check-out lines at supermarkets, making the queue a
first-in first-out (FIFO) data type. The earliest item to arrive is the first
to depart.

A double-ended queue (deque) offers two delete operations, one like the
stack’s and one like the queue’s. Hence, in a deque data type, it is
possible to remove the most recently-added item, as well as to remove
the least recently-added item.

The add and delete operations are commonly known, respectively, as push
and pop for stacks, and enqueue and dequeue for queues. For double-ended
queues, their operations do not appear to have well-accepted names; this
chapter uses the terms addFirst, addLast, removeFirst, and removeLast.

Figure 5.1 schematically shows the names and actions of operations on
stacks and queues. A stack is logically arranged as a pile of elements: the
bottom is the oldest element and the top, the most recently-added element.
Therefore, push and pop operations update the stack’s top. A queue is logi-
cally arranged like a check-out line: the back keeps the oldest element and

73

“book-main” — 2021/11/24 — 22:10 — page 74 — #86

74 CHAP 5: STACKS, QUEUES, AND DEQUES

bottom

top

push pop

enqueue dequeue

back front

STACK QUEUE

Figure 5.1: Stack and queue operations

the front holds the most recent element. Therefore, enqueue adds to the back
and dequeue deletes from the front. A double-ended queue is like a queue
but allows adding to and removing from both the front and the back.

5.2 Stacks

Remember from Chapter 1 that
an abstract data type (ADT)

defines a set of operations and
their behaviors without

prescribing how they must be
implemented.

Among the trio in this chapter, the stack is arguably the simplest but has
managed to show up in countless places. We will begin by defining the stack
as an abstract data type (ADT). A stack keeps a collection of data elements
while supporting the following operations:

• push(e) — adds element e to the top of the stack.

• pop() — removes and returns the element at the top of the stack.

Besides these defining operations, the following are convenience functions
often provided by the stack data type:

• top() — returns without removing the top of the stack.

• size() — returns the number of elements in the stack.

• isEmpty() — returns whether the stack is empty.

Example. Consider a sequence of stack operations below, starting from
an empty stack. The table shows the state of the stack, as well as the
effects of the operations. We render the stack horizontally with the right
end as the top of the stack.

Operation Return Value Stack’s State

push(3) – {3}
push(1) – {3, 1}
pop() 1 {3}
push(4) – {3, 4}
push(5) – {3, 4, 5}
top() 5 {3, 4, 5}
size() 3 {3, 4, 5}
pop() 5 {3, 4}
isEmpty() false {3, 4}
pop() 4 {3}

“book-main” — 2021/11/24 — 22:10 — page 75 — #87

§5.2 Stacks 75

Code 5.1: A minimal stack interface in Java.

 public interface Stack<T> {
 // add elt to the top of the stack
 void push(T elt);

 // remove and return the element at the top of
 // the stack (i.e., most-recently added).
 T pop();

 // return without removing the element at the
 // top of the stack.
 T top();

 // return the number of elements in the stack
 int size();

 // return a boolean indicating whether the
 // stack is empty
 boolean isEmpty();
 }

This ADT translates to an interface in Java as shown in Code 5.1. The
interface uses a generic type T as a placeholder for the type of the stack’s
elements. Despite the simplicity, this data type has found many real-world
applications, including

– code parsing in compilers
– interpreter for the Postscript language for professional-grade printers
– how function calls are most often implemented.

We will see more detailed example applications later in the chapter.

Stack Implementations

First, let us mention that Java has a built-in java.util.Stack class. Here, we
are learning to write one ourselves. For this, we will need a data storage
container, preferably one that is compatible with our access patterns and that
can be resized rather inexpensively. Two linear-storage data structures seem
to fit the bill:

• The ArrayList, which supports appending and deleting the element in
the rear in constant time. Furthermore, this data structure automatically
resizes.

• The LinkedList, which supports appending and deleting the element
in the rear in constant time. Furthermore, this data structure grows and
shrinks its internal bookkeeping as elements are added and deleted.

“book-main” — 2021/11/24 — 22:10 — page 76 — #88

76 CHAP 5: STACKS, QUEUES, AND DEQUES

Code 5.2: A stack implementation using the ArrayList.

 import java.util.*;

 public class ArrayListStack<T> implements Stack<T> {
 private List<T> pile;

 public ArrayListStack() {
 pile = new ArrayList<T>();
 }

 // add elt to the top of the stack
 public void push(T elt) { pile.add(elt); }

 // remove and return the item at the top of
 // the stack (most-recently added).
 public T pop() {
 T topElt = pile.remove(pile.size()-1);
 return topElt;
 }

 // return without removing the item at the top
 // of the stack.
 public T top() { return pile.get(pile.size()-1); }

 // return the number of elements in the stack
 public int size() { return pile.size(); }

 // return a boolean indicating whether the
 // stack is empty
 public boolean isEmpty() { return pile.isEmpty(); }
 }

A Stack Implementation Using A Resizable Array

We will represent the collection of elements as an ArrayList, with theWorst Case vs. Amortized. If
an operation runs in

worst-case constant time,
every call to that operation

always takes constant time. If
an operation runs in amortized
constant time, some call to that
operation can take longer (e.g.,
linear time) but in the long run,
the total time taken by all these
operations is no more than as if

every call is constant time.

top
of the stack being the rear end of the array. Therefore, the push operation
amounts to appending to the array, and the pop operation amounts to deleting
the element at the tail. Both are efficiently supported in O(1) time. Code 5.2
shows an implementation of the stack data type using the ArrayList. No-
tice that the private member variable pile is the ArrayList that keeps the
collection of items.

Since each of these operations takes constant time on the underlying data
structure, each of the stack operations also runs in constant time. As was
discussed in a previous chapter, the ArrayList operations can occasionally
take more than constant time, but they amortize to constant time.

“book-main” — 2021/11/24 — 22:10 — page 77 — #89

§5.2 Stacks 77

Code 5.3: A stack implementation using the LinkedList.

 import java.util.*;

 public class LinkedListStack<T> implements Stack<T> {
 private LinkedList<T> pile;

 public LinkedListStack() {
 pile = new LinkedList<T>();
 }

 // add elt to the top of the stack
 public void push(T elt) { pile.addFirst(elt); }

 // remove and return the item at the top of
 // the stack (most-recently added).
 public T pop() {
 T topElt = pile.pollFirst();
 return topElt;
 }

 // return without removing the item at the top
 // of the stack.
 public T top() { return pile.peekFirst(); }

 // return the number of elements in the stack
 public int size() { return pile.size(); }

 // return a boolean indicating whether the
 // stack is empty
 public boolean isEmpty() { return pile.isEmpty(); }
 }

A Stack Implementation Using A Linked List

We will represent the collection of elements as a LinkedList, with the top of
the stack being the front of the list. Notice that we could also associate the
top of the stack with the back of the list. However, there is an advantage to
using the front of the list: while Java’s built-in LinkedList is doubly-linked
and access to either end is a constant-time operation, the front of the list is
easier to manage with less feature-full lists (e.g., a cons-list or a singly-linked
list). With this design, the push operation amounts to prepending to the list,
and the pop operation amounts to deleting the element at the front. Both are
efficiently supported in O(1) time. Code 5.3 shows an implementation of
the stack data type using the LinkedList. Notice that the private member
variable pile is the LinkedList that keeps the collection of items.

Since each of these operations takes constant time on the underlying data
structure, each of the stack operations also runs in constant time. Unlike the

“book-main” — 2021/11/24 — 22:10 — page 78 — #90

78 CHAP 5: STACKS, QUEUES, AND DEQUES

implementation using the ArrayList, this implementation features constant
worst-case time for each operation, as opposed to amortized constant time.

Example Applications of Stacks

Example I: Line Editor

In the old days, text editors were not as convenient as the text editors we have
today. The so-called line editors were pretty common. The basic idea is to
type a sequence of symbols representing both the actual text and commands,
with some special characters designated as commands:

• The pound sign #, for example, deletes the preceding character. Thus,
the sequence of characters "moo#d##eep" results in the string "meep".

• The at sign @ “kills” the line—that is, resetting the current line back to an
empty line. This means, if we type "hellomorbidworld@pretty planet",
we’ll simply get "pretty planet".

With a stack, it is easy to implement a function that evaluates what the
user types so we have the resulting string. Deleting the most recent character
corresponds to popping the stack, and killing the line is basically starting a
new stack. There is a slight problem because at the end, the elements in the
stack are presented in the wrong order—the reverse of the original string.
This, however, is easy to rectify: just reverse the string before we return. In
code, we have the following:

Code 5.4: Deriving a line in a line editor.

 String computeLine(String inKeyStrokes) {
 Stack<Character> line = new ArrayListStack<>();

 for (int pos=0;pos<inKeyStrokes.length();pos++) {
 char ch = inKeyStrokes.charAt(pos);

 // delete the most-recent stroke
 if (ch == '#') line.pop();
 // reset the line

 else if (ch == '@') line = new ArrayListStack<>();
 // here's the newest stroke
 else line.push(ch);
 }

 // At this point, line has the contents of the
 // line - except in reversed order. To fix this,
 // we'll build a string and reverse it.
 StringBuilder netSB = new StringBuilder();
 while (!line.isEmpty()) { netSB.append(line.pop()); }
 return netSB.reverse().toString();
 }

“book-main” — 2021/11/24 — 22:10 — page 79 — #91

§5.2 Stacks 79

Notice that even though we are using the StringBuilder to help reverse the
characters in this example, we could have used a stack to reverse a sequence.
In general, a stack is often used to help reverse a sequence: if we push elements
into a stack in sequence order, popping them one by one yields the elements
in the reversed order, convenient for reversing a sequence.

Example II: Function Calls

Data
Return Addr to N-1

Return Addr to N-2

Stack Pointer
(top)

Fr
am
e
N

Fr
am
e
N
-1

Fr
m
N
-3

Available/
Unused Space

System Stack. Each call is
stored in a frame with its (local)
variable data and where to
return to (return address) when
this call finishes.

We have studied recursive functions more or less as a black box. Internally,
one magical thing that happens is the system/interpreter knows where we
are in the execution flow. For example, in the factorial function, when we call
fac(5), it recursively calls fac(4). But how does the system know to pass the
return value of fac(4) to the body of fac(5), which is waiting for it?

The answer is it keeps a stack. When a function is called, local variables
(i.e. the environment) and where to return to are pushed onto the stack. And
when a function returns, we pop the return address (where to go back to) and
the environment of the place to go back to so that when it is time to return, it
can restore the local variables and resume the running of the caller.

Example III: Expression Evaluator

How can we evaluate simple mathematical expressions such as 4 + 3/5.0 −

2 ∗ 1.5? With help from the stack, it is in fact not too difficult. To keep things
simple, we will deal with fully-parenthesized expressions. For example,
4 + 3/5.0 − 2 ∗ 1.5 would be (clumsily) written as

((4 + (3 / 5.0)) - (2 * 1.5))

That is, every operator has two operands, and both that operator and its
operands are surrounded by a pair of parentheses.

With this assumption, we can implement the two-stack algorithm of Di-
jkstra, which keeps two stacks—a value stack and an operator stack—and
works as follows:

• Upon seeing a value, push that onto the value stack.

• Upon seeing an operator, push that onto the operator stack.

• Upon seeing a left parenthesis, ignore it.

• Upon seeing a right parenthesis, pop the operator and two values, carry
out the computation, and push the result back onto the value stack.

Example. Consider the steps of running Dijkstra’s two-stack algorithm
on the input ((4 + (3 / 5.0)) - (2 * 1.5)). Each line in the table
below shows a token and the state of the two stacks after processing it.
The stacks are rendered sideways with the top to the right.

“book-main” — 2021/11/24 — 22:10 — page 80 — #92

80 CHAP 5: STACKS, QUEUES, AND DEQUES

Next Token Value Stack Operator Stack

({} {}

({} {}

4 {4} {}

+ {4} {+}

({4} {+}

3 {4, 3} {+}

/ {4, 3} {+, /}

5.0 {4, 3, 5.0} {+, /}

) {4, 0.6} {+}

) {4.6} {}

- {4.6} {-}

({4.6} {-}

2 {4.6, 2} {-}

* {4.6, 2} {-, *}

1.5 {4.6, 2, 1.5} {-, *}

) {4.6, 3} {-}

) {1.6} {}

To turn this into code, we first write a function that evaluates an operator:
double opr(double u, String op, double v) {

if (op.equals("+")) return u + v;
else if (op.equals("-")) return u - v;
else if (op.equals("*")) return u * v;
else if (op.equals("/")) return u / v;
else return Double.NaN;

}

With this, the main logic can be implemented as shown below:

Code 5.5: Dijkstra’s Two-Stack Expression Evaluation.

 double eval(List<String> tokens) {
 Stack<String> ops = new ArrayListStack<>();
 Stack<Double> vals = new ArrayListStack<>();
 List<String> oprs = List.of("+", "-", "*", "/");

 for (String tok : tokens) {
 if (tok.equals("(")) continue;
 else if (oprs.contains(tok)) ops.push(tok);
 else if (tok.equals(")")) {

 String op = ops.pop();
 double v = vals.pop();
 double u = vals.pop();
 vals.push(opr(u, op, v));
 } // otherwise, this is a number
 else vals.push(Double.parseDouble(tok));
 }
 return vals.top();
 }

“book-main” — 2021/11/24 — 22:10 — page 81 — #93

§5.3 Queues 81

5.3 Queues

As a close cousin of the stack data type, a queue is another basic data type
that shows up naturally in numerous places. While the stack follows a last-in
first-out (LIFO) pattern, the queue does the opposite: the first element to
arrive is also the first to depart—i.e., first-in first-out (FIFO). We will first
define it as an abstract data type (ADT) and proceed to discuss how they are
implemented. A queue keeps a collection of elements while supporting the
following operations:

• enqueue(e) — adds element e to the back of the queue.

• dequeue() — removes and returns the element at the front of the queue.

Additionally, the following are convenience functions often provided by the
queue data type:

• front() — returns without removing the element at the front of the
queue.

• size() — returns the number of elements in the queue.

• isEmpty() — returns whether the queue is empty.

Example. Consider a sequence of queue operations below, starting from
an empty queue. The table shows the state of the queue, as well as the
effects of the operations. We render the queue horizontally with the
right end as the front of the queue.

Operation Return Value Queue’s State

enqueue(3) – (3)
enqueue(1) – (1, 3)
dequeue() 3 (1)
enqueue(4) – (4, 1)
enqueue(5) – (5, 4, 1)
front() 1 (5, 4, 1)
size() 3 (5, 4, 1)
dequeue() 1 (5, 4)
isEmpty() false (5, 4)
dequeue() 4 (5)

This ADT directly translates to the Java interface in Code 5.6. The interface
uses a generic type T as a placeholder for the type of the queue’s elements.
The queue is such an intuitive data type. Their applications are often related
to keeping objects/people and making sure they are “served” in the same
order that they come in. Examples include

– Keeping a queue of requests for a shared resource (e.g., a printer).

– Lining up customers in a call center.

– Performing event simulations where the queue keeps future events to
be worked on.

– Crawling a website to visit all pages reachable from a source page.

“book-main” — 2021/11/24 — 22:10 — page 82 — #94

82 CHAP 5: STACKS, QUEUES, AND DEQUES

Code 5.6: A minimal queue interface in Java.

 public interface Queue<T> {
 // add elt to the back of the queue.
 void enqueue(T elt);

 // remove and return the element at the front of
 // the queue.
 T dequeue();

 // return without removing the element at the front
 // of the queue.
 T front();

 // return the number of elements in the queue.
 int size();

 // return a boolean indicating whether the queue
 // is empty.
 boolean isEmpty();
 }

Queue Implementations

First, let us mention that Java has a built-in implementation of the queue
data type. The built-in interface is known has java.util.Queue with method
names that are unique to Java. Concrete implementations include LinkedList
and ArrayDeque. Here, we are learning to write one ourselves. For this, we
will need a data storage container, preferably one that is compatible with
our access patterns and that can be resized rather inexpensively. Two linear-
storage data structures meet this goal:

• The LinkedList supports adding an element to the rear and deleting the
element at the front in constant time. Furthermore, this data structure
readily grows and shrinks its internal bookkeeping as elements are
added and deleted.

• Java’s fixed-size array, although it does not grow and shrink automati-
cally, can be used to support adding an element to the rear and deleting
the element at the front in constant time with the help of two pointers.

A Queue Implementation Using A Linked List

We will represent the collection of elements as a LinkedList, with the front of
the list being the queue’s front. With this arrangement, the enqueue operation
amounts to sticking an element to the rear and the dequeue operation is
deleting the element at the front. Both require only O(1) time on a doubly-
linked list. Code 5.7 shows an implementation using this approach, where the
private variable q is the linked list where the collection of elements is kept.

“book-main” — 2021/11/24 — 22:10 — page 83 — #95

§5.3 Queues 83

Code 5.7: A queue implementation using the LinkedList.

 import java.util.LinkedList;

 public LinkedListQueue<T> implements Queue<T> {
 private LinkedList<T> q;

 public LinkedListQueue() {
 q = new LinkedList<>();
 }

 // add elt to the back of the queue.
 public void enqueue(T elt) { q.addLast(elt); }

 // remove and return the element at the front of
 // the queue.
 public T dequeue() { return q.removeFirst(); }

 // return without removing the element at the front
 // of the queue.
 public T front() { return q.getFirst(); }

 // return the number of elements in the queue.
 public int size() { return q.size(); }

 // return a boolean indicating whether the queue
 // is empty.
 public boolean isEmpty() { return q.isEmpty(); }
 }

A Queue Implementation Using A Fixed-Size Array

Circular View. View the array
as circular and use two indices
to mark the front and the back
of the queue.

Conceptual
View

front

back

At first glance, we might be tempted to use an ArrayList, like we did to
implement a stack, because then resizing would be automatic. However,
we face a big challenge in using an array-based data structure: Because the
elements of our queue are kept contiguously, there is a fast end and a slow
end. As an example, adding an element to or removing an element from the
rear of an ArrayList takes constant time, but the same operations performed
at the front will require linear time. This is because, to keep the elements
contiguous, the rest of the elements have to be moved to the right location,
incurring linear time.

All these obstacles can be easily avoided if we have a maximum capacity in
mind. Indeed, the resizing lesson we applied to create the ArrayList can be
used here so the capacity is about the same as the number of elements while
keeping the amortized cost of each operation constant. For this reason, we
will focus this lesson on building a queue with a preset capacity N.

We keep an array of size N. Conceptually, though, we view it as circular,
with index 0 adjacent to index N− 1. Additionally, we maintain two indices

“book-main” — 2021/11/24 — 22:10 — page 84 — #96

84 CHAP 5: STACKS, QUEUES, AND DEQUES

into the array: front is the index that holds the element at the front of the
queue and back is the index where the next incoming element will be stored.
While it is possible to derive the current size from these two indices, we
choose to simplify logic and keep an additional variable n for size. Notice that
in a circular array, if the current index is i, the index (i+1)%N is next in the
circular view, with the modulo operator accounting for wrapping around.

We implement this logic as shown in Code 5.8, where the elements are kept
in the array q. Initially, both front and back refer to the same index. Readers
are encouraged to reason why this is the right thing to do. The enqueue
operation stores the new element at index back and advances it by one step.
The dequeue operation fetches the element at index front and advances it by
one step. To help Java’s garbage collector, when an element is removed from
the queue, we set that location to null to avoid dangling, rogue reference
from the queue to that element.

5.4 Double-Ended Queues (Deques)

In many situations, we desire an all-in-one data type supporting both FIFO
(like a queue) and LIFO (like a stack) access patterns. Such a data type is in
demand because certain applications need both patterns on the same container
and also because it can be had in the same constant-time performance as the
traditional stack and queue. A double-ended queue (deque, pronounced
DECK) looks much like a queue. Elements can be added to either end and
can also be removed from either end. For concreteness, we will define it as an
abstract data type. A deque keeps a collection of elements while supporting
the following operations:

• addFirst(e) — adds element e at the front of the deque.
• addLast(e) — adds element e at the back of the deque.
• removeFirst() — removes and returns the element at the front of the

deque.
• removeLast() — removes and returns the element at the back of the

deque.
Additionally, the following are convenience functions often provided by the
queue data type:

• first() — returns without removing the element at the front of the
deque.

• last() — returns without removing the element at the back of the
deque.

• size() — returns the number of elements in the deque.
• isEmpty() — returns whether the deque is empty.

Unlike the stack and queue data types, the names of deque operations are not
as standard. We mostly follow Java’s naming. Other common languages such
as Python and C++ use different names but the idea is the same.

Example. Consider a sequence of deque operations below, starting from
an empty collection. The table shows the state of the deque, as well as
the effects of the operations. We render the deque horizontally with the

“book-main” — 2021/11/24 — 22:10 — page 85 — #97

Exercises for Chapter 5 85

right end as the front of the queue.

Operation Return Value Deque State

addLast(3) – (3)
addFirst(1) – (3, 1)
addLast(4) – (4, 3, 1)
first() 1 (4, 3, 1)
removeLast() 4 (3, 1)
removeFirst() 1 (3)
size() 1 (3)
isEmpty() false (3)

It is straightforward to translate this ADT to a Java interface; we left this as
an exercise to the reader. Below we discuss two implementation options.

Implementation Options

Our discussion of the stack and queue data types show various implementa-
tion techniques. Here we will discuss how some of these techniques can be
adopted to implement the deque datatype.

• The LinkedList nicely supports all the desired operations. In constant
time, we can add an element to the front or rear and delete the element
at the front or rear. Furthermore, this data structure readily grows and
shrinks its internal bookkeeping as elements are added and deleted.
In fact, the LinkedList class in Java lines up with the built-in Deque
interface so much so that LinkedList implements the Deque interface.

• A fixed-size array, although it does not grow and shrink automatically,
can be used to implement the deque data type. If we keep two pointers
like we did for the queue, we can, in constant time, add an element to
the front or rear, and delete the element at the front or rear. This option
is especially useful when a maximum capacity is known up front or
we are willing to resize the underlying array appropriately (e.g., using
the doubling trick). Indeed, Java’s built-in java.util.ArrayDeque is an
implementation based on this idea with appropriate resizing.

Exercises

Exercise 5.1. What values are returned during the following series of stack
operations, if we start from an empty stack?

push(7), push(9), pop(), push(2), push(5), pop(),
pop(), push(1), push(8), pop(), push(7), push(4),
pop(), pop(), push(6), pop()

Exercise 5.2. What values are returned during the following series of queue
operations, if we start from an empty queue?

“book-main” — 2021/11/24 — 22:10 — page 86 — #98

86 CHAP 5: STACKS, QUEUES, AND DEQUES

enqueue(7), enqueue(9), dequeue(), enqueue(2),
enqueue(5), dequeue(), dequeue(), enqueue(1),
enqueue(8), dequeue(), enqueue(7), enqueue(4),
dequeue(), dequeue(), enqueue(6), dequeue()

Exercise 5.3. What values are returned during the following sequence of
deque operations, if we start from an empty deque?

addFirst(7), addLast(9), addLast(2), addFirst(5),
last(), isEmpty(), addFirst(1), removeLast(),
addLast(8), first(), last(), addLast(7), size(),
removeFirst(), removeFirst()

Exercise 5.4. On a queue data type, define a cycle operation as taking the
element at the front of the queue and move it to the rear, effectively causing
the queue to rotate by one position. This can always be implemented using a
dequeue followed by an enqueue. In this exercise, you will work with the fixed-
size array implementation. You will implement a method cycle(k), which
performs the cycle operation exactly k times. Your method will work directly
on the array without calling the existing enqueue and dequeue methods.

Exercise 5.5. Our current queue implementation using a fixed-size array only
works with a preset (i.e., fixed) capacity. Use the resizing technique from a
previous chapter to turn this implementation into a queue with O(1)-time
support for all operations without being constrained by a preset capacity. If
the queue stores n elements, it must use space O(n).

Exercise 5.6. Similar to the last exercise, upgrade our deque implementation
using a fixed-size array to resize automatically so it is not constrained by a
preset capacity. If the deque stores n elements, it must use space O(n).

Exercise 5.7. Extend the Dijkstra’s two-stacks implementation discussed
earlier in the chapter to support exponentiation and basic functions such as
log, sin, cos. Your implementation will therefore support expressions such
as (2**(log(5/(1+10))*11))-1.9.

Exercise 5.8. The postfix notation is an unambiguous way to write an arithmetic
expression without any parentheses. As the name suggests, the operation is
written last—after the operands. This means, if (e1) op (e2) is a normal fully-
parenthesized expression, its equivalent postfix version is p1 p2 op, where
pi, i = 1, 2, is the postfix equivalent of ei. As an example, the expression
((3 + 4)*(5 - 2)) / 4 has a postfix equivalent of 3 4 + 5 2 - 4 /.

Describe a nonrecursive solution to evaluate a postfix expression.

Exercise 5.9. Write a program to turn a fully-parenthesized expression into a
postfix equivalent form.

“book-main” — 2021/11/24 — 22:10 — page 87 — #99

Exercises for Chapter 5 87

Exercise 5.10. Earlier we saw a two-stack solution for evaluating a fully-
parenthesized expression. In this exercise, you will extend it to additionally
support exponentiation ∗∗. You will extend it to also support expressions that
are not fully parenthesized. To accomplish this, you will work in two steps,
broken down into a few subtasks below. Throughout, assume all numbers are
floating-point numbers, so the expression 5/2 evaluates to 2.5. Moreover, it is
guaranteed that all the expressions your functions will be tested on evaluate
to a number; you will not be asked for the result of 4/0, for example.

To make life a little easier, you will be working with input that is a list
of tokens. For example, instead of taking in "(1+41)*2", your functions will
work with the list {"(", "1", "+", "41", ")", "*", "2"}. Such a list has
type List<String> in Java.

Subtask I: Implement a function
double evalFullyParenthesized(List<String> tokens)

that takes an expression represented as a list of fully-parenthesized tokens and
returns the result of evaluating that expression. This function must support
+, -, *, /, ** and an arbitrary nesting of parentheses. Remember that the
algorithm we looked at previously does not yet support exponentiation (**).

Subtask II: Most expressions we write and encounter in real life, however,
are not fully parenthesized. Early in life, we learned and have internalized cer-
tain precedence rules that make writing, for example, 1 + 3*5 unambiguous—
it is 1 + (3× 5) = 16. Similarly, we know that result of 1 + 3 * 5 - 21*2/7 is
10.0. The rules of precedence, or what many of us remember as the acronym
PEMDAS, state that

• Parentheses have the highest precedence. This means, 2 ∗ (5 − 1) =

2× 4 = 8.
• Exponentiation has the next highest precedence 2 ∗ 1 ∗ ∗3 + 1 == ((2×

(13)) + 1 = 3.
• After that, Multiplication and Dvision have the same precedence;
• Below that, Addition and Subtraction have the same precedence;
• Finally, operators with the same precedence are evaluated left to right.

For this subtask, you are to implement a function
List<String> augmentExpr(List<String> tokens)

that takes a list of tokens and returns a list of tokens that is a fully-
parenthesized version of the input expression. The input list may already be
partially or fully parenthesized.
(Hints: This task can be solved by extending the Dijkstra’s two-stack algorithm.
You may wish to attempt this task in two stages. Again, you will scan the
token list from left to right:

• Stage I: No Partial Parentheses. Keep two stacks like before, but what
should happen when you see an operator? When should you push that
to one of the stacks? And when should you not—but rather popping
certain things out?

• Stage II: Partial Parentheses. What should be done upon seeing an open
parenthesis? What about a close parenthesis? If popping, how far?)

“book-main” — 2021/11/24 — 22:10 — page 88 — #100

88 CHAP 5: STACKS, QUEUES, AND DEQUES

Chapter Notes

The stack, queue, and double-ended queue data types are discussed in vir-
tually any data structures books. Recommended further reading includes the
book by Sedgewick and Wayne [SW11], the book by Goodrich et al. [GTG14],
and Knuth’s classic bible [Knu73]. Aside from traditional implementations
of stacks and queued mentioned here, there is a neat way to implement a
queue using two stacks [Oka99], popularized by the functional program-
ming community. Exercise 5.10. is perhaps more easily solved using a tree
representation; readers are encouraged to revisit it after completing §12.3.

“book-main” — 2021/11/24 — 22:10 — page 89 — #101

Notes for Chapter 5 89

Code 5.8: A queue implementation using a fixed-size array.

 public class FixedArrayQueue<T> implements Queue<T> {
 private T[] q;
 int front, back, n;

 public LinkedListQueue(int N) {
 q = (T []) new Object[N];
 front = back = 0;
 n = 0;
 }

 // add elt to the back of the queue.
 public void enqueue(T elt) {
 q[back] = elt;
 back = (back+1)%N;
 n++;
 }

 // remove and return the element at the front of
 // the queue.
 public T dequeue() {
 T frontElt = q[front];
 q[front] = null;
 front = (front+1)%N;
 n--;
 }

 // return without removing the element at the front
 // of the queue.
 public T front() { return q[front]; }

 // return the number of elements in the queue.
 public int size() { return n; }

 // return a boolean indicating whether the queue
 // is empty.
 public boolean isEmpty() { return 0==n; }
 }

“book-main” — 2021/11/24 — 22:10 — page 90 — #102

