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Linear Data Storage 4
Linear Collections. What is a
good way to store a sequence
of elements? Fixed-size arrays
are great, but they cannot
efficiently support growing and
shrinking.

Earlier in the book, we saw how a fixed-size array can be used to store
a sequence of values. The fixed-size arrays fall short when the sequence
we are storing can dynamically grow and shrink. This chapter explores
two fundamental ideas for storing sequences while supporting dynamic size
changes: linked lists and array-based lists. As we go through this chapter, it is
vital to understand the strengths and limitations of each of these options.

4.1 A Linked Data Structure

Fixed-size arrays are extremely useful but they are limiting in at least one
significant way: once created, they remain at that size and are costly to grow
or shrink. Indeed, an important limitation of the fixed arrays is that resizing
almost always means creating a new array and copying the data, which is
expensive. We will now look at using references to build resizable collections—
one where adding a new element will be easy and inexpensive.

Our initial goal will be to store a list of ints. We name the class an IntNode
class since we refer to the holder of each data item as a node. Here is a basic
structure, which is sufficient for the task but not handy to use:

class IntNode {
int head;
IntNode next;

}

In declaring this class, we are working with a mental model where a list is
made up of a head element—stored in the head attribute—and has a link to
the remainder of the list—given by the next attribute. This view can be seen
as a recursive definition of a list: with null denoting the empty list, a list is
either empty or a head followed by a list (i.e., the rest of the list).

We will now go ahead and build a list [7, 11, 9], like so:

IntNode list = new IntNode();
list.head = 7;
list.next = new IntNode();
list.next.head = 11;
list.next.next = new IntNode();
list.next.next.head = 9;

45
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It helps to run this in a visualizer. The end result? Figure 4.1 shows a schematic
depiction of the structure we have just created.

IntNode

nexthead

null7 11 9

Figure 4.1: Bare-bones list of integers illustrated.

Notice that this is fundamentally a different organization of data from a
(fixed) array. Whereas a fixed array stores data in consecutive memory, a
linked structure forms a chain—each data item (in this case, an int) is kept in
a container (known as a node) and we make a list by chaining them together,
forming longer and longer chains, as lengthy as we wish.

Adding a constructor

Using the class in the current form is rather awkward. We will make it a little
nicer by adding a custom constructor to the IntNode so that both the head and
next variables can be conveniently set at creation.

What is a constructor, may you ask? Remember that the constructor of a class
is called when an object of a class is created, so we can initialize the internal
variables. Examples will make this abstract concept more concrete.

We will add a constructor to the IntNode class, like so:

public IntNode(int head, IntNode next) {
this.head = head;
this.next = next;

}

It is useful to note that in Java, a class’s constructor is a method with the
same name as the class itself and can bear as many parameters as one wants.
In our case, we make our constructor take in two arguments: the value for
head and the value for next. While it is possible to have fancy logic in the
constructor, our constructor for IntNode simply sets the attributes head and
next to the supplied values.

With this constructor, it is most natural to create the list backwards. If we
think about it, when we new an IntNode, we do not know what comes next
unless we build it from the back. Literally, this starts with the empty list and
the list becomes progressively longer as one more item is tagged on to the
front. Hence, we can write:

IntNode list = null;
list = new IntNode(9, list);
list = new IntNode(11, list);
list = new IntNode(7, list);

It helps to run this code in a visualizer. The end result is the same as before;
however, this time we are building the list starting from the back.
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Most useful lists can display its elements and know its size, so we will
implement the following methods together:

• public String toString() returns the contents of the list. For exam-
ple, at the end of the above example, list.toString() should return
"9, 11, 7".

• public int size() returns the length of the list (i.e., how many ele-
ments the list has).

When we say the list, we are referring to the list given by the object we are
at. This has to be said because if we rewrite the above example more explicitly,
we end up with 3 lists (each a sublist of another):

IntNode list0 = null;
IntNode list1 = new IntNode(9, list0);
IntNode list2 = new IntNode(11, list1);
IntNode list3 = new IntNode(7, list2);

Notice that list3’s next points to list2, which points to list1 and, in turn,
to list0. Therefore, the meanings of toString and size change with where
we call them. For example, list3.toString() should return "7, 11, 9" but
list2.toString() should be "11, 9". Likewise, list3.size() should return
3 and list1.size() should be 1.

We will approach the implementation of these methods in two ways—
recursively and iteratively.

Recursive Traversal

At the core of this endeavor is the ability to walk the whole list. It is of-
ten handy to think about this list recursively. We will begin by asking our-
selves: what is a list? In this case, one convenient answer—as has been
foreshadowed—is the following simple characterization:

A list either (a) stores a single number (int) or (b) is a
number (int) followed by a list (i.e., the rest of the list).

In our representation, a singleton list is one where next is null (e.g., list1).
Otherwise, it is a number (stored in head) followed by a non-null list (as
pointed to by next).

An Implementation of toString

In this view, the toString method has two cases: One can use
Integer.toString(n) to turn
an integer n into a
corresponding String.

• A base case of a singleton list: The list contains no more (i.e., next is
null), so toString should just return the number at the head.

• Otherwise, we should return the number at the front, followed by the
numbers in the rest of the list (How can we obtain this?)

public String toString() {
if (this.next == null)

return Integer.toString(this.head);
else

return Integer.toString(this.head) +
", " + this.next.toString();

}
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An Implementation of size

To implement the size method, one can handle it in the same way as toString.
There are two cases to consider. What should we return in each case?

• A base case of a singleton list: This clearly has size 1.

• Otherwise, the size is 1 + the size of the rest of the list (which can be
determined by calling its size() method on the rest.)

Hence, we have (only the size method is shown):

public int size() {
if (this.next == null)

return 1;
else

return 1 + this.next.size();
}

Iterative Traversal

The code so far has been recursive. Not that it is bad but we sometimes
have reasons to write it in a nonrecursive manner. Here is a general template
for walking such a list. For explicitness, we will use the while loop, though
admittedly, one can clean it up a little bit using the for loop.

Using the while loop, there are 3 ingredients in walking such a list:

• a variable to keep track of where we currently are in the list (initially,
this is set to the front of the list).

• a condition that checks whether we are at the end of the list.

• logic to move to the next node of the list.

In code:

// current stores where we currently are, it initially points
// to the start of the list.
IntNode current = ...;

// current is not null (i.e., not yet an empty list)
while (current != null) {

// logic to do something with the current node
// ...
// ...

// now, advance current to the next node
current = current.next;

}

Compared to a standard index-based loop, the variable current is analo-
gous to the index variable, e.g., int i. The while-condition is analogous to
boundary checking, e.g., i < array.length. The logic to move to the next
node is analogous to incrementing the index, e.g., i++.

Using this template (with a while loop), the size method, for instance, can
be implemented as follows:
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public int iterativeSize() {
IntNode current = this;
int totalSize = 0;

while (current != null) {
totalSize++;
current = current.next;

}

return totalSize;
}

4.2 Evolving Rustic Lists

The list data structure we have just developed feels very primitive: there are
no convenient functions, so using it requires understanding and manipulating
the inside of the data structure ourselves. We will now improve upon it in
several ways, both in terms of usability and performance. Ultimately, we will
take it apart and put the pieces back together!

Improvement I: Encapsulation, Wrapping it Inside a Package

Constructor Overloading.
Java allows a class to have
multiple constructors, known
as constructor overloading. It is
permitted as long as they have
different signatures. This
makes it possible to cater to
different ways to creating an
instance of the class.

An important goal in object-oriented design is to prevent data from being
accessed by the code outside the shield of a class. As a useful byproduct, this
usually helps hide unnecessary details from the users and make our package
more user-friendly.

Following this thinking, the first improvement we will bring to the table
is that of repackaging the implementation, capturing it in a new class that
hopefully will be easier to use and less error-prone when the users use it.

As shown in Code 4.1, this quick reorganization wraps the actual data
storage node into a class. Instead of working directly with data storage nodes,
users are provided with methods such as addFirst and getFirst. These
changes make a few things easier:

• Creating a new list is easy: new SLList() and new SLList(3) will give
you an empty list and a singleton list, respectively.

• The users do not have to manipulate the list themselves. This makes it
much more natural to use. For example:

SLList L = new SLList(19);
L.addFirst(12);
L.addFirst(3);
int x = L.getFirst();

A little discussion is in order. Our upgrade created a new class that wraps
inside it convenient methods. But then, why not just add an addFirst method
to the IntNode class? It turns out there is no efficient way to do this. Impor-
tantly, an IntNode has no efficient way of knowing where the front of the list
is. Hence, it is not practically possible to update the front of the list in this
design.
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Code 4.1: Encapsulating the nodes inside a class.

1 // wrap IntNode inside a new class
2 public class SLList {
3 // the front of the list, so users doesn't have to
4 // update this themselves. remember: IntNode was the
5 // class we wrote previously.
6 IntNode first;
7

8 // two constructors to make initializing a list easier
9 public SLList() { first = null; }

10 public SLList(int x) { first = new IntNode(x, null); }
11

12

13 // so that users don't have to manage the inner
14 // bookkeeping themselves
15 public void addFirst(int x) {
16 first = new IntNode(x, first);
17 }
18

19 public int getFirst() {
20 return first.head;
21 }
22 }

In summary, our first upgrade dealt with creating a “wrapper” that acts as
a middleman between the users and the raw data structure.

Improvement II: More Access Control

We can further hide details from our users, reducing the contact surface where
things can go wrong. In the implementation so far, someone can still write
L.first.next = L.first* and bad things tend to follow after that. We can
prevent such uncouth behaviors by limiting access.

By declaring a method or variable private, we prevent code in other classes
from using that member (or constructor) of a class. We often do this for several
reasons:

• There is less for the user of class to understand.
• It is safer for the class owner to change private (i.e., internal) methods

A New Trick: Nested Classes

While we are at it, we can tidy up the implementation a little. When a class
does not stand on its own (e.g., an obvious subordinate of another class),
it makes sense for aesthetic reasons and otherwise to nest it inside another
class—and potentially hide it by making it private.

*This will cause the list to wraps back to itself like a twisted pretzel!
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Code 4.2: Further access control via nesting and the keyword private.

1 public class SLList {
2

3 private static class IntNode {
4 int head;
5 IntNode next;
6

7 public IntNode(int h, IntNode r) {
8 this.head = h; this.next = r;
9 }

10 }
11 // the front of the list, so users doesn't have to
12 // update this themselves. remember: IntNode was the
13 // class we wrote previously.
14 private IntNode first;
15

16 // two constructors to make initializing a list easier
17 public SLList() { first = null; }
18 public SLList(int x) { first = new IntNode(x, null); }
19

20

21 // so that users don't have to manage the inner
22 // bookkeeping themselves
23 public void addFirst(int x) {
24 first = new IntNode(x, first);
25 }
26

27 public int getFirst() {
28 return first.head;
29 }
30 }

As an example, we will move our IntNode into SLList and hide it too
because clearly no one else has to care about our “raw” data structure. This
will also mean that no one else can manipulate our internal storage without
our knowledge.

There is one more trick we can play. If the nested class never uses any
instance variables or methods of the outer class, declare it static. By declaring
it so, the class cannot access outer class’s instance variables or methods. This
results in a minor savings of memory. Code 4.2 shows what we have after
these modifications.

Improvement III: A Faster size()

We will now bring back the size method. Previously, to determine the size of
a list, we essentially walk the whole list (either recursively or iteratively). But
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how efficient is size really? Suppose size() takes 2 seconds on a list of size
1,000. How long will it take on a list of size 1,000,000?

The trouble is, if the list has n elements, we expect the program to spend
time proportional to n because we have to step on every element of the list. Is
there a better way?

The crux that enables this is our airtight packaging (encapsulation). We
know precisely when someone adds a new element: they have to call our
addFirst method. This means we can just keep track of size as a separate
property to avoid computing it every time it is asked.

The main idea is as follows:

• Keep a size instance variable, initially set to 0.

• For every addFirst, increment it by one.

Hence, the size() method can simply return the stored size. Note that it
no longer needs to walk the length of the list and will return instantaneously.

Improvement IV: More Functionality—addLast

We will now try to add more functionality: a new method addLast, which
adds an item at the end of the list.

The main challenge is, in order to put a new item at the end of our list,
we need to (a) know where the end of the list is and (b) change it to store an
additional node. A natural idea is to walk the length of the list and stick a
new node there, like so:

public void addLast(int x) {
size += 1; // update the size property

// This is to handle when first is null
if (first == null) {

first = new IntNode(x, null);
return;

}

IntNode p = first;
while (p.next != null) {

p = p.next;
}

p.next = new IntNode(x, null);
}

But this is ugly! Why do we need a special if for the case when the list
is empty. On the one hand, this is necessary because when the list is empty,
adding to the end of the list is the same as adding to the front, which requires
updating the variable first. On the other hand, though, imagine how this
would be for more complex data structures. Could we possibly eliminate
special cases? Now this should be our goal in life because we only have so
much working memory. As you can relate, simple is better than complicated.
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A Sentinel Trick

One common trick in programming linked data structures is the use of sentinel
nodes. According to dictionary.com, a sentinel (sen-tn-l) is

a person or thing that watches or stands as if watching.

a soldier stationed as a guard to challenge all comers and
prevent a surprise attack:to stand sentinel.

In a more technical sense, a sentinel node does not hold any meaningful
data; it is there so that we can avoid corner cases.

 Tips

Special cases are generally not that special. Eliminate special cases as
much as possible. We only have so much working memory. Hence,
simple is better than complicated.

The root of evilness in the above implementation is that the empty list is
null, not even a proper IntNode object; therefore, accessing first.next causes
an error. To fix this:

• We will make a special object that is always there. So then, the empty
list is a list with just this special object (the sentinel node).

• The true first is what this sentinel node points to.

To implement this idea, we’ll rename first to sentinel because it is no
longer pointing to the true first. These are the relevant bits to implement the
sentinel idea:

1 // COMMENTED OUT: Our previous "first"
2 // private IntNode first;
3

4 // Put in the sentinel node (instead of first).
5 private IntNode sentinel;
6

7 // the sentinel node doesn't store any meaningful value.
8 // we use -1 for an arbitrary/dummy value.
9 public SLList() { sentinel = new IntNode(-1, null); size = 0; }

10 public SLList(int x) {
11 IntNode first = new IntNode(x, null);
12 sentinel = new IntNode(-1, first);
13 size = 1;
14 }
15

16 // UPGRADED addLast
17 public void addLast(int x) {
18 size += 1;
19

20 IntNode p = sentinel;
21 while (p.next != null) {
22 p = p.next;
23 }
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24

25 p.next = new IntNode(x, null);
26 }

As we move toward using a sentinel design, notice that addFirst has to be
updated as well. We leave it as an exercise to the reader, see Exercise 4.2.

Improvement V: Faster addLast

As it stands, inserting an element at the back of the list takes much longer than
inserting one at the front. This is pretty easy to see because while addFirst
simply puts in a new node, addLast has to walk the whole length of the list
before putting in the new element.

How can we modify our list data structure so that addLast is also fast?
One natural idea is to keep a reference pointing to the last node. If we had

this, perhaps we would not need to walk the whole length anymore. (Readers
should try this idea before reading on.)

However, there is a catch. We also plan to support the entire crew of
addFirst, getFirst, removeFirst, addLast, getLast, removeLast. It is not
difficult to convince ourselves that maintaining a reference to the last node
alone does not allow us to easily remove the thing at the rear end.

Importantly, we need an ability to walk backwards.

Idea: Keep Forward and Backward Pointers

We introduce a back reference for each node, allowing us to walk both forward
and backward. This design is known as a doubly-linked list.

IntNode

prev nextdata

Figure 4.2: Doubly-linked list with pointers forward and backward.

In code, we can update the IntNode with forward and backward pointers
as follows (only the member variables are shown).

class IntNode {
int data;
IntNode next, prev;

}

Notice that in the process, the attributes have also been renamed: data stores
the node’s data; the pointers next and prev keep the pointers to the next and
previous nodes, respectively.

Exercise 4.8. will explore doubly-linked lists in greater detail. When
implementing it, we will find that it has an annoying special case: last
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sometimes points at the sentinel, and it sometimes points at a “real” node.
Here are some ideas to help eliminate special cases and help with our sanity:

Two Sentinels. We can avoid this ambiguity (last sometimes pointing a real
node and some other time pointing to the sentinel) by keeping two sentinels:
one in the front (frontSen), one in the back (backSen). In this case, the back
sentinel replaces last. Actual data lie between them. This means that the
code will strive to maintain the following: as we walk from frontSen forward,
we will hit all the data entries and eventually backSen. On the other hand,
if we start from backSen and move backward, we will encounter all the data
entries (in reverse) and eventually frontSen. This will look as follows:

frontSen backSen

prev nextdata

Circular Sentinel. We can alternatively keep a ring. In this proposal, there is
only one sentinel node (sen). Now sen.next points to the first real data node
and sen.prev points to the last node. Note that if the list is empty, sen.next
points to sen itself and sen.prev also points to sen. The main idea is that if
we start walking forward from sen, we will hit every node in the list order
and finally come back to sen. And if we start walking backward from sen, we
will hit every node in reversed order and finally come back to sen. This will
look as follows:

sen

Generic Lists

Our list thus far only supports storing integers; it is not possible to store
Strings or double values. There is a nice feature of Java, however, that will
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remedy this: Java allows us to defer type selection until we use the class. For
a concrete example, we will go back the very basic implementation before all
the improvements and turn that into one that supports a generic type.

Code 4.3: Using Java generics to defer choosing an element type.

1 // the type T is a parameter, allowing us to defer type
2 // selection
3 public class SLList<T> {
4

5 private class Node {
6 // use T instead of the type int, so head stores
7 // data of type T
8 T head;
9 Node next;

10

11 public Node(T h, Node r) {
12 this.head = h; this.next = r;
13 }
14 }
15 // the front of the list, so users don't have to update
16 // this themselves. remember: IntNode was the class we
17 // wrote previously.
18 private Node first;
19

20 // two constructors to make initializing a list easier
21 public SLList() { first = null; }
22 public SLList(T x) { first = new Node(x, null); }
23

24

25 // so that users don't have to manage the inner
26 // bookkeeping themselves
27 public void addFirst(T x) {
28 first = new Node(x, first);
29 }
30

31 public T getFirst() {
32 return first.head;
33 }
34 }

Code 4.3 shows the adapted implementation. When we declare SLList<T>,
that T is a type parameter. The type parameter can be thought of as a type
variable. We can choose whatever name we want, but single capital letters are
common. After that, whenever we want to refer to this type, just use T. For
example, we write T head;—meaning declare a variable named head with
type T, the type given by the parameter T.

We will now look at how to specify the parameter T. When we instantiate a
class, do the following:
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SLList<Double> list1 = new SLList<>();

That is, write out the desired type using type declaration—and use the
empty diamond operator (i.e.,<>) during instantiation.

For technical reasons, the type parameter has to be a reference type. Fortu-
nately, each of the primitive types has a corresponding reference type:

int -> Integer double -> Double char -> Character
boolean -> Boolean long -> Long byte -> Byte
short -> Short float -> Float

Java’s Built-In LinkedList

It is worth mentioning that Java has a built-in linked list implementation,
which is internally implemented as a doubly-linked list. This is the linked
list class LinkedList<T>, which leaves a generic type T for us to specify its
element type. As a doubly-linked list, operations at either end of the list tends
to be constant time. But as we can intuitively see, working with elements
elsewhere (e.g., in the middle) requires walking to that location, which is
most likely proportional to how far the walk is. The built-in class offers many
convenience methods and can be used in conjunction with utility functions
from the Collections class.

4.3 A Resizable Array-Based Structure

Limitation of Linked Chains. We have just developed a list that supports
adding to, getting, and removing the front or the back of the list efficiently—in
time that is constant, independent of how long the list is. However, for the
kind of linked lists we studied, getting or setting the i-th position can take a
long time—we intuitively expect it to take time proportional to how far the
element is from the closer end.

This is a fundamental limitation of a design that chains data elements
together in a list. Specifically, only elements with direct pointers to them can
be efficiently accessed. The other elements require some amount of “walking”
in the list.

Supporting Fast Random Access. In an attempt to sidestep this limitation,
we will look at a different list data structure that will allow for getting and
setting data at any position in constant time. However, there is no free lunch;
there are other features that we have to give up.

We may remember that the reason get(i) was slow for long lists is because
it has to walk the list to the desired position. How can we fix this? At one
end of the spectrum, we have the linked list structure, which arranges all the
data elements in a chain. At the other end of the spectrum, we have the array
structure, which lays out the data elements in consecutive memory.

For this reason, accessing any position of an array is extremely fast and
is independent of the array size. That is, if a is an array, then a[i] can be
retrieved in constant time, independent of how long a is.
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Code 4.4: Basic implementation of an array-based list.

1 public class ArrayIntList {
2 private int[] items;
3 private int size;
4

5 public ArrayIntList() {
6 // Q: How big of an array to create?
7 items = new int[10];
8 size = 0;
9 }

10

11 public void addLast(int x) {
12 items[size] = x;
13 size++;
14 }
15

16 public int get(int i) {
17 return items[i];
18 }
19

20 public int size() {
21 return size;
22 }
23 }

How do we use the array to implement a list? At the core, Java, as well as
most other modern languages, provides fixed-size arrays, upon which our
implementation will be based.

Naïve Array List

Our goal is to build an array list out of the fixed-size array. Code 4.4 shows
a basic implementation with limited use. For ease, we’ll make an int array
list for now. The same trick with generics we learned earlier can be readily
applied to support arbitrary types. This code has several features and design
points that should be discussed:

• The array items is used to store data items.
• For reasons that will be apparent, we have decided to keep the capacity

of items separate from the size of our list. For this, we keep another
attribute called size.

A General Outline. Together, we seek to maintain the following invariants,
summarized in the figure below:

• size indicates the number of actual data items. More precisely,
items[0], items[1], ..., items[size-1] are the actual data entries.

• This means, if addLast is called, it should go into position items[size].
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unusedactual data

demarcation line between 
used and unused as 
indicated by size.

Figure 4.3: Schematic depiction of invariants in an array-based list.

Supporting getFirst and getLast. Where is the front of the list? Where is
the last of the list? Do we know which index into items is the front? How
about the last? Let’s turn this into code for getFirst and getLast:

public int getFirst() {
return items[0];

}
public int getLast() {

return items[size - 1];
}

Supporting removeLast. How do we remove the last item? Let’s try this out
on your own. (Hint: adjust size.) After a moment’s thoughts, here is a way
to implement removeLast that respects the invariants laid out above:

public int removeLast() {
int itemToRemove = items[size - 1];
// good habit to clean up the unused spot
items[size - 1] = 0;
size--;

return itemToRemove
}

Initial Array Size and Resizing

How big should items be? If we keep adding more and more items, the array
will run out of space. We’ll need to grow it. But by how much?

First thing first, how do we know the items array is already full? That is,
we have no more room for more items. This is pretty easy to check:

if (size == items.length) {
// it's full

}

More interestingly, perhaps, what to do when when the array is full and we
wish to add more items? we need to make room for them. This is also pretty
easy. The steps are:

• Allocate a new array (but how big?).
• Copy the items from the old array into the new array.

Writing this in code is straightforward. We will dedicate a function grow to it.
We would call grow with a new capacity, one that is at least as large as before.
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1 private void grow(int capacity) {
2 int[] expandedItems = new int[capacity];
3 System.arraycopy(items, 0, expandedItems, 0, size);
4 items = expandedItems;
5 }

In this implementation, System.arraycopy is a lower-level routine than
Arrays.copyOfRange. It gives us more control; in many Java implementa-
tions, copyOfRange internally calls System.arraycopy.

The more difficult question is, what capacity should it be resized to?

Option I: Increase the capacity by 1. Let us start with items of capacity
0 and when it is full, grow the capacity by 1—that is, grow(size+1). As a
thought experiment, we ask: With this option, if 500 addLast starting from an
empty list takes 2 seconds, how long do you think 5000 addLast will take?

Actually running a program can give a definitive answer. But mathematical
analysis can also come in to help us here. Every time we grow to size k, we
create a new array size k, copy k− 1 items into this new piece, and deposit 1
new item (from addLast). The cost of doing all these is approximately c · k for
some constant c, which depends on the machine, Java internals, etc. etc.

This means if we start with an empty list, calling addLast n times will
require a total of

c · 1 + c · 2 + . . . c ·n = c · n(n+ 1)
2

,

where we have used the summation formula 1 + 2 + 3 + · · ·+n = n(n+ 1)/2.

The important thing to note at this point is that on average, the cost per
addLast is

1
n
· c ·n(n+ 1)

2
≈ c ·n/2.

It suffices to say, this is not constant—it takes longer on a longer list than a
shorter one. More precisely, it would be prohibitively slow to call multiple
addLasts in succession. This stands in sharp contrast with addLast in a doubly-
linked list. But don’t despair yet!

Option II: Double the Capacity. We will double the capacity every time the
array items is full. That is, if we start with 1, it will grow to 2, to 4, to 8, etc.
We note here that this is how Python and Java implement its list (Python’s
list and Java’s ArrayList). Let us attempt to understand this mathematically.
How good is the doubling trick?

Say we start with an array of capacity 1 and call addLast n times. For
simplicity, suppose n is a power of 2, i.e., n = 2k. The following observation
is easy to see:

• We only grow the array at capacity 1, 2, 22, 23, . . . , 2k − 1.

• Each time we grow from size 2i to 2i+1, it takes time around c · 2i+1 for
some constant c (by a reasoning similar to what we did for Option I).
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Hence, the total time spent is

c · 21 + c · 22 + c · 23 + · · ·+ c · 2k

= 2c(1 + 21 + · · ·+ 2k−1)

= 2c(2k − 1)

6 2cn,

where we have used the geometric sum formula 1 + 21 + 22 + · · · + 2t =

2t+1 − 1. If we mentally “redistribute” time evenly to all the operations, this
means each addLast only costs about 2c, which is constant. This sense of
redistribution of time is known as amortized time. Hence, the amortized time
of addLast does not grow with the length of the array, effectively meaning
each time we call addLast, we can think of it as taking constant time.

Discussion

In an array list, adding to the front (addFirst) will inevitably be slow. If we
stick with this layout, it intuitively requires moving elements in the entire
array to make room for the first slot. Note that so far the capacity tracks the
number of elements rather closely. We can show that it is always within a
factor of 2.

There is an additional tricky bit. How about removeLast? If we keep
deleting elements from the array list, at one point we will be left with so much
excess capacity. But should we “scale down” when we are not using most of
the array? The short answer is yes. One strategy is the following: if less than
25% of the array is used, we halve the capacity. Further lessons on algorithms
and data structures will give us a framework to reason about this and make
clear why this is a good idea. Java has a built-in ArrayList<T> class, which
uses this resizing strategy.

Exercises

Exercise 4.1. Consider the "rustic" IntNode class discussed at the beginning of
the chapter. Write a method

public IntNode incrList(int delta)

that returns a new IntNode-list identical to this list, but with all values incre-
mented by delta. Note that your method must not change the original list.
Use either recursion or iteration.

Exercise 4.2. When we upgraded our SLList to use a sentinel, we left addFirst
as an exercise to the reader. Update addFirst to work correctly with the
sentinel design.



“book-main” — 2021/11/24 — 22:10 — page 62 — #74

62 CHAP 4: LINEAR DATA STORAGE

Exercise 4.3. Our discussion of singly-linked lists (SLList) contains several
improvements to the basic implementation. It is time to use the fragments
described earlier to put together a working SLList that uses a sentinel. Your
SLList class will not keep a reference to the last node. It should be complete
with the following constructors/methods:

• Two constructors: SLList() to construct an empty list, and
SLList(int x) to construct a list with with an int, namely x.

• All of the following methods: addFirst, addLast, getFirst, getLast,
size. The size method should be fast.

Exercise 4.4. Add a public String toString() method to the SLList class
above. Feel free to change the internal IntNode class. Be reminded that it is
possible to implement this without touching IntNode at all.

Exercise 4.5. Add a public void removeFirst() method to the SLList class
above. This method removes the element at the front of the list. If the list is
empty, it does nothing. How does it affect how we maintain size?

Exercise 4.6. Add two methods
public int get(int index);
public void set(int index, int newValue);

to the SLList class above. The get method returns the item at index index
in the list (the front element has index is 0). The set method sets the item at
index index in the list to a new value of newValue. For ease, assume that the
index is valid.

Exercise 4.7. Add a public void insert(int newValue, int k) method to
the SLList class above. The method insert(newValue, k) inserts newValue
into the list at position k. This means, for example, insert(x, 0) will insert x
at the front of the list. Because insert adds a new entry to the list, if the list’s
size was n prior, it will be n+ 1 after.

Exercise 4.8. Implement a doubly-linked list by piecing together ideas de-
scribed earlier. Name your class DLList<T> with a generic type parameter T.
Your implement should follow the design of our SLList, which encapsulates
internal details within the class. Make sure to use one of the two sentinel
designs discussed earlier. Your class should be complete with the following
constructors/methods:

• Two constructors: DLList() to construct an empty list, and DLList(T x)
to construct a list with one element x.

• All of the following methods: addFirst, addLast, getFirst, getLast,
size. Each of these should run in constant time, i.e., independent of
how long the list is.

Exercise 4.9. Add support for adding an item to the front of our int array list
by writing a public method:

public void addFirst(int x)
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How long do you you think it takes to run this? Does it change with the
length of the the list?

Exercise 4.10. Implement an array list class class AList<T> capable of stor-
ing elements of a generic type T, similar to what we did for the linked list.
Your implementation should be complete with the same set of convenience
methods. The general idea is to change int[] items to a generic T[] items.
But there are some technical concerns.

How to make an array of generics? It is not possible to write new T[2]. Java
simply doesn’t allow that. To sidestep Java’s craziness, you’ll create an Object
array and type-cast it as T[]. This will cause Java to give you a warning, but
you can safely ignore it. In effect, if you want to create an array of type T of
size n and store it as items, you’ll write:

items = (T[]) new Object[n];

The joy of garbage collection. When you implement removeLast, it is im-
portant that you set the removed item to null, like so:

public T removeLast() {
T itemToRemove = items[size - 1];
items[size - 1] = null; // important: see below
size--;

return itemToRemove
}

While zeroing out the removed position was optional in the int array list
implementation, it is crucial in the generic implementation. Here are a few
things to understand: We don’t explicitly free unused memory in Java. Java
destroys unused objects automatically—and it knows this because the last
reference to an object has been lost. Therefore, if you keep a reference to an
otherwise unused object, Java will continue to keep this object around. We
need to “free ” this reference, so Java can properly collect garbage!

Chapter Notes

For an alternative exposition of linked- and array- list design and imple-
mentations, check out Goodrich et al.’s book [GTG14]. This chapter also
touches on class design principles and tricks. Read Joshua Bloch’s Effective
Java [Blo08] and Herbert Schildt’s Java: A Beginner’s Guide [Sch18a] for further
lessons. In an array-based list, proper resizing is key to efficiency. Learn about
amortized analysis and the standard doubling trick that make each add and
remove practically free over time [Cor+09; Eri19].
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Interlude: Java Extras

This interlude describes extra Java features that will prove useful in imple-
menting data structures and algorithms down the road. We will take a look at
auto- boxing and unboxing (i.e., the ability to seamlessly go back and forth
between primitive types and wrapped reference types), and more discussion
of generics, including how one can put bounds on the type parameters. We
close with another useful implementation technique: higher-order functions—
passing a function as input to another function—and subtyping.

Autoboxing

We already knew that for each primitive type in Java, there is a corresponding
reference type. For example, the int has an Integer counterpart. Why, then,
is it possible to write the following code?

Integer iob = 100; // instead of = new Integer(100);
int i = iob; // instead of = iob.intValue();

Prior to Java 5, the process of wrapping a value inside an object (known
as boxing) and extracting a wrapped value (known as unboxing) has to be
carried out manually. Gladly, in modern Java, we no longer have to do that.
Converting between the primitive types and their type-wrapper classes is
more or less seamless.

However, this has some important implications for programmers like
ourselves:

Unboxing null. Our type wrapper objects can be null. Unboxing a null
value leads to a NullPointerException exception where we least expect it.
Here are some examples:

static double triple(double x) { return 3*x; }
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public static void main(String[] args) {
Double x = null;
double y = 2.0 + triple(x);
System.out.println(y);
System.out.println((x - 32)/9);

}

Try running this piece of code and we will be met with a surprise! The line
double y = 2.0 + triple(x); looks so uninteresting that when Java informs
us that there is a NullPointerException on that line, we could be puzzled.
The issue is when triple is called, the actual static method expects a primitive
double. Now Java, through auto-unboxing, will gladly unbox the reference
Double variable x, except the value of x is null. Boom!

Boxed Objects Aren’t Readily Computable. Java cannot perform compu-
tation directly on the wrapped objects, so if iob is an Integer object, the
statement ob++ involves more steps that it appears:

• unboxing,

• incrementing, and

• boxing

• (plus, throwing the original boxed object away).

The extra, but hidden, steps can lead to important performance bugs. The
two loops below may seem to achieve the same effect, but they take vastly
different amounts of time to run. Readers are encouraged to try them out:

final int N = 1_000_000_000;
for (Integer iob=0;iob<N;iob++) {} // loop, do nothing inside
for (int i=0;i<N;i++) {} // loop, do nothing inside

More Generics

In Java, generics essentially means type parameters, enabling us to write a
program in which the type of data is left as a parameter. Let us quickly recap
the basics of generics.

Generic Parameter(s) for Classes and Interfaces. To declare a class with
generic parameters, write

class A<T>
class B<T, U>
class C<Key, Value, Time>

Modifiers such as public, private, etc. apply as usual. Then, the type
parameters can be used inside the class that we declare. The same
goes for interfaces—for example, we would write interface I<T> and
interface ExampleInterface<S, T>.

To indicate that a generic class implements a generic inteface, write

class C<T> implements I<T> { ... }
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where we mentally note that T is a type parameter of class C, which is then
passed on to interface I.

Every reference type qualifies as a generic parameter. The same does not
work with primitive types, but then we have type wrappers. For further
illustration:

List<Integer> list = new ArrayList<>(); // OK
List<int> badList = new ArrayList<>(); // Nope

The Diamond Operator <>. Starting in Java 7, Java has support for the
diamond operator <>, which adds type inference and enables programmers
to save quite a bit of typing. We start with a basic example:

// without the diamond operator
List<Integer> listA = new ArrayList<Integer>();
// with the diamond operator
List<Integer> listB = new ArrayList<>();

From the declaration that we provide, Java can infer the most suitable type to
be used for constructing the ArrayList. Hence, we can drop the explicit type
declaration, reducing verbosity.

Generics in Methods and Constructors. It is possible to have generics for
static methods, constructors, and (regular) methods (in addition to what the
class has already declared). Below is an example:

class MyClass<T> {
<ItemT> MyClass(ItemT arg) { ... } // constructor
static<X> staticMethod(X arg) { ... } // static method
<X> regularMethod(X arg) { ... } // regular method

}

Notice that additional type parameters are declared at the start of the expres-
sion that declares that particular construct.

Bounded Types and Wildcards

Bounded Types. We often wish to limit the types that can be passed to a
type parameter. For example, we would like a generic type T to be only
numbers, not just any type. Java allows us to do this: write

<T extends superClass>

to indicate that only T that is a superClass will be permitted. Here is a concrete
example:

class NumberFun<T extends Number> {
T number;
NumberFun(T num) { number = num; }
double getFractional() {

return number.doubleValue() - number.intValue();
}

}
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In the example above, NumberFun will accept any type T as long as T has Number
as a superclass. By this virtue, we know that the type T inside this class will
have all the methods/properties of Number. This is how we are able to write
code that uses the methods doubleValue and intValue, which are guaranteed
to exist in every class that is a Number.

Before moving on, we will note that each type parameter can have its own
type bound.

Wildcards. Suppose we wish to extend the class NumberFun above with a
method integralEqual(that) that compares whether the integral part of this
object is that same as the integral part of that object. Our first attempt might
be to write

boolean integralEqual(NumberFun<T> that) {
return this.number.intValue() == that.number.intValue();

}

This only works in a limited sense: we can only compare NumberFun<T> of
the same underlying number type T. That is to say, we cannot compare a
NumberFun<Double> against a NumberFun<Integer>.

It is possible to fix this, however. The body of our code above, in fact, does
not care what kind of number it is as long as it is a Number and hence has
a method intValue. The trick is to use the concept of a wildcard. We will
rewrite it as follows:

boolean integralEqual(NumberFun<?> that) { ... }

The body of this method stays the same. But with the question mark (?),
NumberFun<?> matches any underlying type.

Higher-Order Functions and Subtyping

To motivate this discussion, we will start with a case study of writing a generic
function maxIndex that finds the index that stores the largest element in an
array. This is such a common routine that should only need to be written once
and used essentially everywhere. Below is a straightforward implementation
for the int[] array:

int maxIndex(int[] items) {
if (items.length == 0)

return -1;
int maxIndex = 0;
for (int index=0;index<items.length;index++) {

if (items[index] > items[maxIndex])
maxIndex = index;

}

return maxIndex;
}

The trouble with this code is that we cannot quite reuse it with other types.
For example, suppose we have an array of Cat[], where the Cat class has the
code below:
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public class Cat {
private String name;
private int weight;
private int age;

public Cat(String name, int weight, int age) {
this.name = name;
this.weight = weight;
this.age = age;

}

public String getName() { return name; }
public int getWeight() { return weight; }
public int getAge() { return age; }

}

There are a few issues at hand: First, it is unclear how to compare two
instances of Cats—do we mean heavier (i.e., a higher weight value)? Or do
we mean the name appearing later in the lexicographical sense? Second, even
if the intent is clear—for example, we wish to compare them by weight—we
still have to work to say that.

To lay out design choices, we put on pause the maxIndex discussion and
toy with a much simpler function max, which returns the larger of the two
objects. Below are two compelling ideas for expressing how two objects are to
be compared:

• Idea #1: Explicit higher-order comparison function. In this proposal,
we pass in a comparison function to the function directly. Hence, the
shape of max will be as follows (in pseudocode):
def max(x, y, compare):

if compare(x, y) == LARGER:
return x

else:
return y

• Idea #2: Subtyping polymorphism comparison. Differently, in this
version, we insist that the objects we are working with have certain
methods that allow for comparing them. Hence, the shape of max in this
case will be as follows (in pseudocode):
def max(x, y):

if x.largerThan(y):
return x

else:
return y

Quick Discussion. Before diving into the technical maneuvers required to
implement these ideas, we discuss their merits and drawbacks and when
each proposal should be used. Using the explicit higher-order function ap-
proach, we can choose the comparison function, leading to more control and
explicitness. In contrast, in the subtyping approach, the object itself makes
the choice, leading to more concise code provided that the default choice is
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the right choice for our code. In general, the subtyping approach is often used
to provide a default comparator, whereas the higher-order function approach
supplements it when users want to specify their own comparator.

Higher-Order Functions: The User Provides A Comparator

A higher-order function (HoF) is a function that treats another function as its
(input) data. How can we implement and use functions that take as input
another function? There are two stories here: the story prior to Java 8 and
the story in Java 8 and on. We will talk about both mechanisms—sadly, the
ancient syntax, as annoying it may be, is still prevalent.

Prior to Java 8. Prior to Java 8, there are no reference types pointing to
functions. What this means is that we could not write a function that has a
“function” type, as there was simply no data type for functions.

We can, however, work around this limitation by defining our own inter-
face. We then represent a concrete function by writing a method that conforms
to this interface. For a simple example, we will begin by writing an interface
that defines any function that takes in an integer and returns an integer—an
IntUnaryFunction:

public interface IntUnaryFunction {
int apply(int x);

}

Remember that an interface defines, in essence, a type—and a contract speci-
fying what methods must exist in the class implementing it. In the present
case, this interface says a class satisfying the interface must have a public
method apply that takes as input an int and returns an int. When we want
to pass a function (int to int) into another function, we will implement it as
this apply method. Below is an example that implements a concrete function
in a class which implements this interface:

class DoubleFunction implements IntUnaryFunction {
public int apply(int x) { return 2*x; }

}

We now give an example of a function that uses it:
int twice(IntUnaryFunction f, int x) {

return f.apply(f.apply(x));
}
// Example Usage
System.out.println(twice(new DoubleFunction(), 5));

The intention of the twice method is to take in a function f and an input
integer x, and return the result of apply f repeatedly twice to x (i.e., f(f(x))).
Notice that by design, f.apply is the act of calling f. In the example usage,
we will see 20 printed out.

The New Way: Java 8 and On. The situation in Java 8 and later is much
more pleasant. There are now reference types to refer to functions. The
code below shows how we can reference functions and pass them to another
function:
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import java.util.function.*;
class HoFDemoJava8 {

static int doubleFunc(int x) { return 2*x; }
static int twice(Function<Integer, Integer> f, int x) {

return f.apply(f.apply(x));
}

public static void main(String[] args) {
int result = twice(HoFDemoJava8::doubleFunc, 5);
System.out.println(result);

}
}

Several features should be noted: First, one can implement a function that
will be passed into another function as an ordinary method, in this case a
static method. Java 8 and on have a concept of functional references and the
expression HoFDemoJava8::doubleFunc yields the reference to this function.

Second, the functional types are part of java.util.function.*. In this
case, the function type we are after is a function from integers to integers.
However, generic types have to be reference types, so we use the Integer
type for integers, resulting in Function<Integer, Integer>.

Writing maxIndex using HoF. If we remember how maxIndex was written
for the int[] array, the main difference for a generic array is that we need a
different way to compare two given items: Is object a larger than object b? By
asking the user to pass in a comparison function, our maxIndex can use it to
make comparisons appropriately. We design the comparison function to take
two objects a and b, and return whether the former object a is larger than the
latter object b, leading to the following method declaration:

static<T> int maxIndex(
T[] items,
BiFunction<T, T, Boolean> isLarger) { ... }

where the BiFunction<...> type declaration represents a function that takes
two arguments (both of type T) and returns a boolean value. The body of the
function stays mostly the same; the only change is to the line that performs
the comparison:

static<T>
int maxIndex(T[] items, BiFunction<T, T, Boolean> isLarger) {

if (items.length == 0)
return -1;

int maxIndex = 0;
for (int index=0;index<items.length;index++) {

if (isLarger.apply(items[index], items[maxIndex]))
maxIndex = index;

}

return maxIndex;
}
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This means that maxIndex will be replaced whenever the item at index is larger
than the item at maxIndex according to isLarger.

To use this maxIndex implementation, we can invoke it like the following
example shows:

1 class MaxDemo {
2 static boolean isLargerByWeight(Cat x, Cat y) {
3 return x.getWeight() > y.getWeight();
4 }
5 public static void main(String[] args) {
6 Cat[] items = ... // list of cats omitted
7 int sampleRet;
8 sampleRet = maxIndex(items, Maximum::isLargerByWeight);
9 sampleRet = maxIndex(

10 items,
11 // OR: declare a function in place
12 (Cat x, Cat y) -> x.getWeight() > y.getWeight()
13 );
14 }
15 }

Subtyping: The User Provides A Default Comparator

Often, there is a default way to compare objects. For the purpose of this dis-
cussion, it is obvious that for cats, we should be comparing weight. Therefore,
we wish to be able to write the following line when we make a comparison:

if (items[index].isLargerThan(items[maxIndex]))

The trouble is, how can we know whether the item object has a .isLargerThan?
Because our implementation is supposed to work for every object type, some
objects—but not all—will have this method. For this code to work, we need
a way to ensure that the item objects we are working with have the method.
The trick is to tell Java that the kind of objects that we support is exactly those
that have .isLargerThan. We will do this in two steps through the help of
Java interfaces:

• define an interface that promises such a method; and

• tell Java that you only want items of that kind.

Similar to what we have seen before, the interface below promises a method
isLargerThan that takes in an argument of type T and returns a boolean:

public interface HasIsLarger<T> {
boolean isLargerThan(T that);

}

The next piece of the puzzle is to write maxIndex to only accept items that
conform to this interface. We use the following familiar declaration:

static<T extends HasIsLarger<T>> int maxIndex(T[] items) {...}

This declaration says the type for items isn’t any T but rather any T that satisfies
the HasIsLarger<T> interface. Below is the rest of the implementation:
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static<T extends HasIsLarger<T>> int maxIndex(T items[]) {
if (items.length == 0)

return -1;

int maxIndex = 0;
for (int index=0;index<items.length;index++) {

if (items[index].isLargerThan(items[maxIndex]))
maxIndex = index;

}

return maxIndex;
}

To complete this example, we show how to update the Cat class to comform
to the HasIsLarger interface. There are only two simple changes: (i) declare
that the class will implement the interface, and (ii) implement the promised
method—i.e., isLargerThan. The code below shows the class declaration line
and the added method; the remaining lines are omitted.

public class Cat implements HasIsLarger<Cat> {
// existing code omitted
public boolean isLargerThan(Cat that) {

return this.weight > that.weight;
}

}


