
“book-main” — 2021/11/24 — 22:10 — page 247 — #259

Disjoint Sets 14
Disjoint Sets. A family of
disjoint sets is nothing more
than just sets without
overlapping elements. In
computer science, this
abstraction, which can be
supported efficiently, is
surprisingly rich and has found
many applications.

A data structure for disjoint sets represents a dynamic (i.e., continually
changing) collection of disjoint (i.e., nonoverlapping) sets. More precisely, it
maintains a collection S = {S1,S2, . . . ,Sk} of disjoint sets, where X is a base
set, every set Si ⊆ X, and Si ∩ Sj = ∅ for all i 6= j. The collection is dynamic
as sets can be united together to form larger sets.

Most often, the collection starts out with each member of the base set X
being in its own set. For example, if X = {1, 2, 3}, the sets are S1 = {1}, S2 = {2},
and S3 = {3}. We intend to to support the following two main operations:

• Given two elements x,y ∈ X, determine whether they belong in the
same set.

• Given two elements x,y ∈ X, unite the set containing x and the set
containing y.

Our goal is to design and implement an efficient disjoint sets data structure.
There are a few considerations:

• The number of elements in the base set X—denoted by n—is large.

• The number of method calls (operations)—denoted bym—can be large.

• Calls to these methods can be interleaving (i.e., an arbitrary combination
of queries and uniting).

Sample Applications. This mathematical abstraction has various applica-
tions, ranging from cycle detection to being a key component in a popular
algorithm for minimum spanning trees. It can also be used in other contexts:

• Support the base set lists computers in a network. Can machine A reach
machine B?

• Suppose the base set lists variable names in a computer program. Are
these variables the same? This is used in program optimization, register
allocation, and plagiarism detection.

This chapter begins with a look at a simple community model and a straw-
man solution. This forms the basis for more efficient disjoint-set data struc-
tures. Following that, we will look at several other representations for the
problem, each attempting to fix a issue identified in prior representations.
This includes implicit membership, lazy linking, and height control.

247



“book-main” — 2021/11/24 — 22:10 — page 248 — #260

248 CHAP 14: DISJOINT SETS

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

Figure 14.1: Isolated communities become less isolated after linking link(0, 4)
and link(3, 7).

14.1 Storing Connected Worlds

Consider a town with nmembers 0, 1, 2, . . . ,n− 1. Somewhat strangely but
initially no one knew anyone else, so we started off with n isolated “commu-
nities,” as shown in Figure 14.1 (left). Not long after, bonding would take
place. For example, linkages between 0 and 4, and between 3 and 7 were
formed, creating larger communities in this town.

With more bonding, larger communities were formed. The rule is simple:
when x and y bond together, the community in which x belongs and the
community in which y belongs unite into a larger community.

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

Figure 14.2: Larger communities are formed with more linking (thick lines).

It is easy to see that communities in this town are disjoint sets and we
expect to support the following concrete operations:

• isConnected(x, y) returns true if x and y belong in the same set (com-
munity) at the moment (i.e., given all the linkages so far).

• link(x, y) unites the set containing x with the set containing y.
How should we represent such a collection of disjoint sets so that the

operations as listed can be efficiently supported?

Explicit Sets and Back References

To store a system of disjoint sets, we may consider storing each set using an
existing Set data type. This can be implemented via the HashSet or TreeSet
classes in Java. For example, the system in Figure 14.2 (left) will be kept as 4
separate sets:

A = {0, 4}
B = {1}
C = {2, 5, 6}
D = {3, 7}



“book-main” — 2021/11/24 — 22:10 — page 249 — #261

§14.1 Storing Connected Worlds 249

These sets do not need to be named; we only name them so we can refer back
to them more easily. In this representation, we do not have an efficient way to
support isConnected: given two elements x and y, we cannot tell which sets
they belong in, so we are unable to quickly verify whether they belong in the
same set.

This is, however, not difficult to fix—keep a map from each element to the
set that contains it. For instance, we would keep the following back-reference
map:

S = { 0: A, 1: B, 2: C, 3: D, 4: A, 5: C, 6: C, 7: D}

If such a map is kept as a HashMap, the operation isConnected can be supported
in constant time. This is as fast as one could hope for.

Yet there appears to be no way to efficiently support link. For example, to
unite link(4, 5), we appear to need two things:

• Form a new set that is the union of {0, 4} and {2, 4, 6}. Because this is a
set, it would be hard to avoid spending time proportional to the size of
the set if we hope to store it explicitly as Java’s sets.

• Redirect the back-reference map so that the elements of the union point
to the new set. At the very least, we need to redirect elements of the
smaller of the two sets.

These two obstacles motivate new a design, without which link would often
take O(n) time, where n is the size of the base set.

Implicit Membership With Eager Linking

Without loss of generality, the elements of X can be named 0, 1, . . . ,n− 1, as
was the case in our example. One thing becomes quickly clear: to support our
data type, we do not need to keep the different sets explicitly. Being able to do
so means we do not need to form a new set every time two sets are united.

With this in mind, we are motivated to implicitly represent membership in
a set as follows:

Keep a map find from each member of X to a number
such that find(x) is the same as find(y) if and only if they
belong in the same set.

In other words, find(x) gives the “name” of the set that contains x.
We will store this map in the simplest possible way, as an array

int[] p;

of length n, where p[x] is the value we want find(x) to return. This is possible
because the members are named 0, 1, . . . ,n− 1.

Initialization. We make p[i] = i for i = 0, 1, ..., n-1. This makes each
element belong in its own set, satisfying our initial condition.

Operations. Supporting isConnected(x, y) is simple.
boolean isConnected(int x, int y) {

return p[x] == p[y];
}



“book-main” — 2021/11/24 — 22:10 — page 250 — #262

250 CHAP 14: DISJOINT SETS

This works because we have arranged for the map encoded by p to give the
same value if and only if they belong in the same set. Also, it is easy to see
that isConnected takes O(1) time to answer.

Supporting link(x, y) is more involved, yet still conceptually simple:
Change all elements whose p are the same as p[x] to p[y]. In code, we have:

void link(int x, int y) {
int xName = p[x], yName = p[y];
for (int i=0;i<p.length;i++) {

if (p[i] == xName)
p[i] = yName;

}
}

This code has inside it two implicit steps: it looks for the members of the set
that contains x. These are precisely everyone whose number was the same as
x. Once identified, they are updated to have the same number as the number
that y has.

Using this interpretation, the
array p = {3, 3, 4, 3, 4}

can be depicted as follows
(self-pointing is omitted):

3

0 1

4

2

Visualization. To visualize our data structure, it helps to interpret the array
p[] as “pointing to.” More precisely, p[x] is what element x points to. This
can be viewed as family trees. In tree terminology, p[x] is the parent of x and
if p[x] is x itself, it is the root of that tree. That is, p can be seen as a forest.

Example. Suppose we play out the example above step-by-step.
Specifically, we use n = 8 and apply link in the following order:

Initial 0 1 2 3 4 5 6 7

link(3, 7)

0 1 2 4 5 6 7

3

link(0, 4)

1 2 4

0

5 6 7

3

link(2, 5)

1 4

0

5

2

6 7

3

link(5, 6)

1 4

0

6

2 5

7

3

link(4, 5)

1 6

0 2 4 5

7

3

As it stands, while we have avoided storing the sets explicitly, we have not
managed to avoid redirecting a whole host of references. The core issue is
that when a set is united with another set, the entire set of elements is moved
to join a new set. In other words, our link operation appears too eager.



“book-main” — 2021/11/24 — 22:10 — page 251 — #263

§14.2 Lazy Linking 251

14.2 Lazy Linking

When we link x and y, the eager scheme would redirect every member of the
set containing x to the “name” of the set that contains y. This strategy is too
eager—that is, it carries out too much upfront work. How can we make link
less eager? This turns out to be simple: more indirection.

Lazy linking will only direct
the roots. Once the roots are
found, nothing else has to
change.

x
y

Using the “point-to” view we took in the visualization above, each element
x can be followed until the element there points to itself. We term this element
the root of x, denoted by root(x). This root element is special: we can make it
represent the set S whose elements have it as the root—that is, every y ∈ S
has the same root r = root(y).

Once the root of x and the root of y have been identified, link will simply
make root(x) point to root(y). This linking step clearly takes constant time.

Implementation of Lazy Linking. To implement this idea, we will begin by
writing a method that identifies the root of a given element, like so:

int root(int x) {
while (p[x] != x) {

x = p[x];
}
return x;

}

The root method does nothing more than following the “point-to” relation,
until the element points to itself. When this happens, we know we have
reached the root.

To support isConnected(x, y), we only need to figure out whether x and
y have the same root, hence writing:

boolean isConnected(int x, int y) {
return root(x) == root(y);

}

To support link(x, y), we will make the root of x point to the root of y:

boolean link(int x, int y) {
p[root(x)] = root(y);

}

Notice that the workhorse of both operations turns out to be the root
function. We will discuss their running time soon. For the time being, we will
look at a concrete example of this idea in action.

Visualization. By interpreting the p[] array like before, we can visualize
our lazy linking data structure as the following example shows.

Example. Suppose we play out the example above step-by-step.
Specifically, we use n = 8 and apply link in the following order:



“book-main” — 2021/11/24 — 22:10 — page 252 — #264

252 CHAP 14: DISJOINT SETS

Initial 0 1 2 3 4 5 6 7

link(3, 7)

0 1 2 4 5 6 7

3

link(0, 4)

1 2 4

0

5 6 7

3

link(2, 5)

1 4

0

5

2

6 7

3

link(5, 6)

1 4

0

6

5

2

7

3

link(4, 5)

1 6

4

0

5

2

7

3

Running Time Analysis. The running time of both isConnected(x, y) and
link(x, y) is the same as the running time of running root(x) and root(y).

But how long does root take? By inspecting the code, it is clear that the
running time of root is the number of times it has to follow the “point-to”
relation until the code reaches its root.

As it turns out, this quantity is variable. For some element, the element
itself is already a root. For some other element, the element is just one or two
steps away from its root. Yet it is possible that for some element, it has to go
through essentially the whole roster of base elements before hitting its root.
Below is a concrete example:

Example. Consider a system with n elements. Suppose link is issued in
the following order:

link(0, 1) link(1, 2) link(2, 3) . . .
link(n-2, n-1)

The “point-to” relation is a long chain 0→ 1→ 2→ · · · → n− 1. Hence,
if root(0) is called, it will take Θ(n) time in this case.

This leads to the conclusion that lazy linking, as it stands, requires O(n)
for both isConnected and link in the worst case. But we should remember
that the bottleneck here is the potentially long chain that root has to follow
before either the real linking or checking can be carried out. In what follows,
we will look at a technique that helps control the length of such a chain.



“book-main” — 2021/11/24 — 22:10 — page 253 — #265

§14.2 Lazy Linking 253

Height Control

Lazy linking turns out to be an important ingredient in efficient linking. The
challenge? We need to avoid deep structures. This can be accomplished via
simple modifications. Remember that lazy linking points the root of a set to
the root of another set. We will keep track of the size of each root so that when
it is time to unite two sets, we will link the smaller root into the larger one.

The larger root intuitively houses a deeper structure than the smaller root.
Hence, we expect that linking the smaller root into the larger one will not
make the structure any deeper whereas the opposite of linking the larger root
into the smaller one will inevitably deepen the resulting structure. This can
be formalized as follows.

Let h(e) be the height of an element e, defined to be the length of the longest
chain of point-to chasing that reaches e. In tree terminology, the height of e is
the height of the tree rooted at e. We can guarantee the following:

Lemma 14.1. For every root element r, the height h(r) 6 log2 n(r),
where n(r) is the number of elements for which r is the root.

x y

sam
e
height

as
before

Proof. The proof will be invariant-style, showing that the lemma holds
at the beginning and after every operation that affects heights.

Initially, every element is the root of itself, so at the start, the relation
h(r) 6 log2 1 = 0 is true for all r ∈ X. Now the only operation that can
affect the heights is link. Consider a link(x, y) call. Let rx = root(x)
and ry = root(y). Prior to this link operation, it is an invariant that
h(rx) 6 log2 n(rx) and h(ry) 6 log2 n(ry). We will assume without
loss of generality that n(rx) 6 n(ry); otherwise, we can just swap the
roles of x and y. This means that rx will be made to point to ry. Now
that rx is pointing to ry, the new size of ry is n ′ = n(rx) +n(ry). At the
same time, the new height of ry is h ′ = max(1 + h(rx),h(ry))—see the
illustration (right).

We claim that h ′ 6 log2(n
′). Because it is clear that h(ry) 6

log2 n(ry) 6 log2 n
′, we are left to show that 1 + h(rx) 6 log2 n

′. Now
we know that

1 + h(rx) 6 1 + log2 n(rx) = log2 (2 ·n(rx)) ,

but then, we have n(rx) 6 n(ry), so

2n(rx) = n(rx) +n(rx) 6 n(rx) +n(ry) = n ′.

This means 1 + h(rx) 6 log2 n
′. Altogether, we have that the invariant

holds after link and hence the lemma holds throughout.

Consequently, this lemma guarantees that calling root from anywhere will
take at most log2 n steps, making root a O(logn)-time operation.

Implementation. We will implement this in a class called
LazyWithHeightControl. The only modifications here will be related



“book-main” — 2021/11/24 — 22:10 — page 254 — #266

254 CHAP 14: DISJOINT SETS

to keeping track of the size of each set and appropriately pointing the roots
based on their sizes. But how can know the size of a set? It suffices to keep an
array that indicates for each root the size of the set it is responsible for. Hence,
we keep the following member variables:

private int[] p;
private int[] sz;
private int n;

Specifically, if r is a root, we keep in sz[r] the size of the set that r is the
root. The other member variables are as before. Initially, each set contains
exactly one member, so at the start, sz is an array of all 1s. Therefore, the
constructor looks as follows:

public LazyWithHeightControl(int n) {
this.n = n;
this.p = new int[n];
this.sz = new int[n];
for (int i=0;i<n;i++) {

p[i] = i; // points to itself
sz[i] = 1; // size 1

}
}

The only other method that has to change is link. But this is straightfor-
ward to write now that we know the size of each root:

public void link(int x, int y) {
int rootX = root(x), rootY = root(y); // O(log n) each
if (sz[rootX] <= sz[rootY]) {

// join x into y
p[rootX] = rootY;
sz[rootY] += sz[rootX];

} else {
// vice versa
p[rootY] = rootX;
sz[rootX] += sz[rootY];

}
}

Visualization. We will now visualize the same sequence of linking when
this height-control policy is used.

Example. Suppose we play out the example above step-by-step.
Specifically, we use n = 8 and apply link in the following order:



“book-main” — 2021/11/24 — 22:10 — page 255 — #267

Exercises for Chapter 14 255

Initial 0 1 2 3 4 5 6 7

link(3, 7)

0 1 2 4 5 6 7

3

link(0, 4)

1 2 4

0

5 6 7

3

link(2, 5)

1 4

0

5

2

6 7

3

link(5, 6)

1 4

0

5

2 6

7

3

link(4, 5)

1 5

2 4

0

6

7

3

Let us extend this example a bit further so that we can observe how
height control plays out when the sets become larger.

link(0, 1)

5

1 2 4

0

6

7

3

link(3, 2)

5

1 2 4

0

6 7

3

Running Time Analysis. The constructor that makes n sets takes O(n) as
before. It follows directly from Lemma 14.1 that each of isConnected and
link, which internally call root twice, takes at most O(logn) time.

Exercises

Exercise 14.1. Let a--b denote calling link(a, b). Suppose eager linking is
used. Starting from n = 7 disjoint sets, what is the resulting structure after
applying the following sequence of operations?

0--4, 1--3, 6--4, 5--2, 1--5, 0--1

Exercise 14.2. For the same set up as Exercise 14.1., suppose instead that lazy
linking is used but this time instead of linking a smaller root into a larger root,



“book-main” — 2021/11/24 — 22:10 — page 256 — #268

256 CHAP 14: DISJOINT SETS

we link a larger root into a smaller root. What does the resulting structure
look like?

Exercise 14.3. For the same set up as Exercise 14.1., suppose instead that lazy
linking is used and we are linking a smaller root into a larger root as we did
earlier for height control. What does the resulting structure look like?

Exercise 14.4. Draw a visualization similar to the examples in this chapter
corresponding to the following p[] array:

i 0 1 2 3 4 5 6 7 8 9
p[i] 1 1 2 1 2 2 2 5 7 4

Exercise 14.5. Johnny keeps a disjoint-sets data structure that implements
lazy linking with size-based height control as discussed earlier. He claims that
the following p[] array was obtained by applying a series of link operations
to a starting point that involves n disjoint sets {0}, {1}, . . . , {n− 1} with n = 7.

i 0 1 2 3 4 5 6
p[i] 4 3 2 2 2 2 6

First, draw a visualization corresponding to this array. Then, give a se-
quence of link(x, y) operations that results in that p[] array, or argue that
Johnny couldn’t have obtained such an array (by, e.g., proving the array
violates some critical property).

Exercise 14.6. Another effective height-control strategy is linking by rank
(aka. union by rank). The idea is to maintain the rank of each root. Initially,
every element is a root and it has rank 0. When uniting two sets, we link the
root of a lower-ranked set into the root of a higher-ranked set (the set whose
rank is a larger number). When root rx is made to point to root ry, the rank of
ry stays the same unless the rank rx and the rank ry are the same, in which
case the rank ry is increased by 1.

Prove that if e is an element and re is the root of e, then root(e) takes time
O(rank(re)), where rank(re) denotes the rank of re.

Exercise 14.7. For the same set up as Exercise 14.1., suppose linking by rank
from the previous exercise is used instead. What does the resulting structure
look like?

Exercise 14.8. Write a Java class that implements disjoint sets using linking by
rank as discussed in Exercise 14.6. What is the running time of each of your
operations?

Exercise 14.9. Remember that an undirected tree T is a simple, connected
graph that has no cycle. Here, connectedness means any vertex in the graph
can reach all the other vertices in the graph. A graph that can be partitioned
into one or more trees that do not have common vertices are called a forest.

You will be working with an undirected, simple graph G = (V ,E). What
is a little unusual is that the edges are presented to you one by one as an
Iterable, in an arbitrary order. You are to implement a method



“book-main” — 2021/11/24 — 22:10 — page 257 — #269

Notes for Chapter 14 257

int countTrees(int n, Iterable<Pair<Integer, Integer>> edges)

with the following specifications:

• The input is a number n—the number of vertices in G (vertices are
called 0, 1, . . . ,n− 1)—and an Iterable whose length ism, where each
element is a pair representing an undirected edge. Therefore, such a pair
e simply indicates that there is an edge between e.first and e.second.

• The method is to return the number of trees in the forest if G is a forest—
or otherwise return 0 if G is not a forest.

Your algorithm must run in O(m logn+ n) time or faster, and use at most
O(n) space. That is, it is not possible to store all the edges in your algorithm.

Exercise 14.10. Further optimization to height control can be made by intro-
ducing what is known as path compression: when root(x) is called to identify
the root of x, it redirects everyone it visits to the root, like so:

int root(int x) {
if (p[x] != x)

p[x] = root(p[x]);
return p[x];

}

This helps reduce the height of the tree while doing the same work that root
has to do nonetheless. There are many interesting theoretical properties that
path compression has. For now, we’ll study it empirically by looking at how
they perform on the following sequence of operations: the notation a--b
means link(a, b).

3--7, 0--4, 2--5, 5--6, 4--5, 0--1, 3--2

How does the structure compare to the structure you would otherwise
obtain without path compression?

Chapter Notes

Galler and Fischer [GF64] are believed to be the first to study disjoint-set
data structures. The simple O(logn)-time data structures discussed in this
chapter were known from early on. Linking strategies (e.g., by rank and by
size) were extensively studied. Path compression was introduced to reduce
the height of the forest storing the sets. Hopcroft and Ullman [HU73] show
thatO(log∗ n) is possible, where log∗ denotes iterated logarithm. Many of the
important results for disjoint-set data structures are due to Robert E. Tarjan,
who gives, among other results, a O(α(m,n))-time data structure [Tar75] and
shows that it is not possible to do it faster in the amortized sense [Tar79]. Here,
α(·, ·) denotes the inverse of the Ackermann function. The function α grows
extremely slowly. It is believed that α is less than 5 for any practical input
size. For further study, more advanced algorithms textbooks such as Cormen
et al. [Cor+09], Dasgupta et al. [DPV08], and Kleinberg and Tardos [KT06]
discuss this topic at length.



“book-main” — 2021/11/24 — 22:10 — page 258 — #270


