
“book-main” — 2021/11/24 — 22:10 — page 225 — #237

Basic Graph Algorithms 13

The 7 bridges of Königsberg in
Euler’s time. https://upload.

wikimedia.org/wikipedia/commons/

5/5d/Konigsberg_bridges.png

Bogdan Giuşcă c CC BY-SA 3.0

Graphs, also known as networks, offer a great way of expressing relation-
ships between pairs of entities. As an abstraction, we are deliberately vague
about what entities are because they are used to refer to many different sorts
of things, depending on the application and context. Indeed, graphs are one
of the most important and versatile abstractions in modeling and solving
problems in computing.

An Ancient Problem. Königsberg was the name of a historic Prussian city.
As the story has it, Königsberg, during the great mathematician Leonhard
Euler’s time, spanned both sides of the Pregel river and included two islands
connected to each other and to the other portions of the “mainland” city via 7
bridges, as depicted in the map. The problem was, how to walk through the city
crossing each of the bridges exactly once?

Readers are encouraged to spend a moment solving this puzzle before
proceeding. Centuries ago, Leonhard Euler proved that the problem has
no solution—it is impossible to come up with such a walk. The process of
working it out has led to the development of what is known today as graph
theory and this particular problem became known as the Euler tour problem.

To strip this down to its bare essence, we will redraw the map as follows:
Each land mass is represented as a circle (later called a vertex or a node), and
a bridge between land mass x and land mass y is represented by a line (later
called an edge) connecting them. This is depicted below. For this problem,
where the circles are drawn do not really matter; it is the interconnection
between them that determines whether the problem has a solution.

Figure 13.1: The 7 bridges of Königsberg abstracted as an undirected graph.

More generally, a graph is made up a set of vertices and connections
between them. It can either be directed, with the directed edges (arcs) pointing

225

https://upload.wikimedia.org/wikipedia/commons/5/5d/Konigsberg_bridges.png
https://upload.wikimedia.org/wikipedia/commons/5/5d/Konigsberg_bridges.png
https://upload.wikimedia.org/wikipedia/commons/5/5d/Konigsberg_bridges.png

“book-main” — 2021/11/24 — 22:10 — page 226 — #238

226 CHAP 13: BASIC GRAPH ALGORITHMS

from one vertex to another, or undirected, with the edges symmetrically
connecting vertices. Graphs can have weights or other values associated with
either the vertices and/or the edges. Before discussing graphs more formally,
we will touch on a short list of example graph applications.

• Road networks. Vertices are intersections; edges are the road segments
between them. Such networks are used by Google Maps and similar
programs to help us navigate between locations. They are also used to
study traffic patterns.

• Dependence graphs. Graphs are used to represent dependencies or
precedences among items. For example, task A has to be completed
before task B can begin. Such graphs are used as input into algorithms
that minimize the total time or cost to completion.

• Document link graphs. Perhaps, the most prevalent example is the link
graph of the web, where each web page is a vertex, and each (hyper)link,
a directed edge. Link graphs are used, for example, to analyze relevance
of web pages, the best sources of information, and good link sites.

• Social network graphs. Graphs are used to represent, for example, who
knows whom, who communicates with whom, and who influences
whom. An example is who follows whom on Twitter, which can be
used to determine how information flows. Other questions that can be
answered in this way include how topics become hot, how communities
develop, or even who might be a good match for who!

13.1 They Call Me Graphs

We will now lay out the foundation for studying graphs in the following
sections. Let us start with directed graphs, which are useful for representing
asymmetric relationships.

Definition 13.1 (Directed Graph). A directed graph or a digraph is a pair
G = (V ,A), where V is a set of vertices (or nodes), and A ⊆ V × V is a
set of directed edges (or arcs).

A Directed Graph. It has 4
vertices and 4 arcs:

a

b

c

d

Under this definition, each arc is an ordered pair e = (u, v) ∈ V × V and a
graph is allowed self loops (v, v)—meaning an arc coming out of v and going
back into v.

Example. This graph is G = (V ,A), where

• V = {a,b, c,d} and

• A = {(a,b), (c,b), (b,d), (c,d)}.

Next, let us define undirected graphs, which are used to represent symmet-
ric relationships.

Definition 13.2. An undirected graph is a pair G = (V ,E), where V is a
set of vertices (or nodes), and E ⊆

(
V
2
)

is a set of undirected edges.

“book-main” — 2021/11/24 — 22:10 — page 227 — #239

§13.1 They Call Me Graphs 227

An Undirected Graph. It has
4 vertices and 5 edges:

a

b

c

d

Under this definition, each edge is a set of size 2, i.e., e = {u, v}. This means
that the edge {u, v} is the same as the edge {v,u}. In this notation, self loops are
discouraged. Often, an undirected graph is represented by a directed graph
by placing an arc in each direction for each undirected edge. In this sense,
directed graphs are often seen as being more general.

Example. This undirected graph example is G = (V ,E), where

• V = {a,b, c,d} and

• E =
{
{a,b}, {a, c}, {a,d}, {b, c}, {b,d}

}
.

Graph Terminology

Graphs come with many specialized terms, though most of them are intuitive.
For now, we will discuss graphs without data or weights on the edges.

Neighbors and Neighborhood. A vertex u is a neighbor of (or adjacent to) a
vertex v if there is an edges between them. For directed graphs, we distinguish
between in- and out- neighbors of a vertex. For an undirected graph G =

(V ,E), the neighborhood of G, denoted by NG(v) or simply N(v), is the set of
neighbors of v—that is to say,

NG(v) =
{
u ∈ V | {u, v} ∈ E

}
.

When G = (V ,A) is directed, we write N+(v) for the set of out-neighbors of v
andN−(v) for the set of in-neighbors of v. The neighborhood of a set of vertices
U ⊆ V is given by N(U) = ∪v∈UN(v). We can similarly extend N+ and N−.

There is a specific term for the size of a neighborhood. The degree of a vertex
v, denoted by deg(v), is given by deg(v) = |N(v)|. For directed graphs, deg+

and deg− can be similarly defined.

p

q r

s

This undirected graph has
n = 4 vertices and m = 6
edges. As an example, p is
adjacent to q, s, and r. Hence,
N(p) = {q, s, r}. Moreover, the
path spqr is a (simple) path in
this graph. Also, the cycle sqrs
is a (simple) cycle in this graph.

Paths, Cycles, and Reachability. A path in a graph is a sequence of adjacent
vertices. That is to say, for a graph G = (V ,E), a path p = p0p2 . . .p|p| is a
sequence of vertices such that pipi+1 is an edge in G for all i = 0, 1, . . . , |p|− 1.
The length of a path, denote by |p|, is the number of edges on the path. A
simple path is a path with no repeated vertices.

A vertex v is reachable from a vertex u in G if there is a path starting at u
and ending at v. An undirected graph is connected if all vertices are reachable
from all the other vertices.

A cycle is a path that starts and ends at the same vertex. A simple cycle is a
cycle that has no repeated vertices other than the starting/ending vertex.

Size and Sparsity. We use n = |V | and m = |E|. This means m 6
(
n
2
)
=

n(n− 1)/2 for undirected graphs and m 6 n2 for directed graphs. We say
that a graph is dense if the number of edges is about the same order as the
maximum number of edges (i.e.,m = Θ(n2)) and otherwise sparse.

“book-main” — 2021/11/24 — 22:10 — page 228 — #240

228 CHAP 13: BASIC GRAPH ALGORITHMS

13.2 Graph Representation

How should graphs be kept in our computer programs? The choice of graph
representation largely depends on the operations we intend to support. The
following operations are common among standard graph algorithms:

• Find the degree (i.e., the number of neighbors) of a vertex.

• Find out if u and v are adjacent.

• Iterate over the neighbors of a given vertex.

• Iterate over all the edges of the graph.

1

0

2

3

To simplify matters, it is traditionally assumed that the vertices are num-
bered from 0 to n− 1. This suggests the following representations:

Edge List. This representation simply stores a list of pairs (i, j) of edges. This
can work for both directed and undirected graphs (with each edge
doubling up). For example, the graph next to this paragraph is stored as

{ (0,2), (0,3), (1,3), (2,0), (2,3), (3,0), (3,1), (3,2) }

Adjacency Matrix. This representation stores a graph G = (V ,E) as an n×n
matrix A(G) of binary values, in which Ai,j is 1 if and only if (i, j) ∈ E.
For our running example, this gives

A(G) =

0 0 1 1
0 0 0 1
1 0 0 1
1 1 1 0

It should be noted that for undirected graphs, the matrix is symmetric
(i.e., A> = A) and the lack of self loops means that the diagonal is all 0s.

Adjacency Array. This representation keeps n arrays, where the i-th array
stores the neighbors of vertex i. More precisely, if a[] is an array of
length n, then a[i] is an array listing the neighbors of vertex i. For
undirected graphs, it is customary to store each edge {u, v} in both
directions. For our running example, we have

int[][] a = {
{2, 3}, // node 0's neighbor(s)
{3}, // node 1's neighbor(s)
{0, 3}, // node 2's neighbor(s)
{0, 1, 2}, // node 3's neighbor(s)

}

All the classic representations have one or more of the following issues:

• We cannot easily change the graph (e.g., adding vertices/edges or re-
moving them)

• We cannot easily work with meaningful vertex names (the vertices are
stored as 0, 1, 2, . . .).

• Some common operations are inefficient.

“book-main” — 2021/11/24 — 22:10 — page 229 — #241

§13.2 Graph Representation 229

Adjacency Map

Often, the vertices are richer
entities than simple numbers
0, 1, In this case, allowing
an arbitrary vertex type (e.g.,
String) can be convenient.

CNX

HKT

UBP

BKK

HDV

Using richer data structures, we can develop a more versatile graph represen-
tation. The representation, which we will term the adjacency map, stores a Map
from every vertex to the set of its neighbors. Hence, we aim to internally keep
the graph as

Map<Vertex, Set<Vertex>> graph;

where Vertex is a generic type for how we wish the vertices to be.

More concretely, our running graph example uses Integer vertices and
would be stored as follows (abusing notation):

graph = {
0: {2, 3},
1: {3},
2: {0, 3},
3: {0, 1, 2}

}

This means that accessing the set of neighbors of any vertex is inexpensive; it is
just one lookup, and once the corresponding set has been fetched, operations
on it can be supported rather inexpensively. We can use both the HashMap and
TreeMap for this, though the running time will be different.

It is a good idea to encapsulate the graph representation and the actions
we do on it. To this end, we will work with the following interface, whose
implementation is given as Exercise 13.1.

Code 13.1: An interface to represent an undirected graph.

1 public interface UndirectedGraph<Vertex> {
2 int numEdges(); /** How many edges? */
3 int numVertices(); /** How many vertices? */
4 int deg(Vertex v); /** Return the degree of v */
5

6 /** Return an iterable of vertices adjacent to v */
7 Iterable<Vertex> adj(Vertex v);
8

9 /** Is there an edge between u and v? */
10 boolean isEdge(Vertex u, Vertex v);
11

12 /** Add a new vertex */
13 void addVertex(Vertex v);
14

15 /** Add an edge between u and v */
16 void addEdge(Vertex u, Vertex v);
17

18 /** Remove an edge */
19 void removeEdge(Vertex u, Vertex v);
20 }

“book-main” — 2021/11/24 — 22:10 — page 230 — #242

230 CHAP 13: BASIC GRAPH ALGORITHMS

13.3 Graph Traversal

Many questions about a graph can be answered by systematically walking in
that graph. For example, which vertices can be reached from a vertex s? Is it
true that a given graph is bipartite*? The process, known as graph traversal,
typically starts from a source vertex or a set of source vertices. Then, it visits
vertices that have not yet been explored until all the vertices have been seen
or a target vertex has been reached. Various strategies have been proposed,
mainly differing in how the new vertices are chosen. We will begin this section
with a strategy known as breadth-first search.

A

B

C

E

D

Figure 13.2: An example for
graph traversal illustration.

With source vertex D, the
layers of vertices visited are:

Layer # Vertices

0 D
1 E
2 A, C, B
3 -

Breadth-First Search (BFS)

Breadth-first search (BFS) starts at a source vertex s, visits the neighbor of s,
visits the neighbors of the neighbor of s, and so on. In other words, it explores
vertices in layers:

• Layer 0 (starting) consists of the source vertex.

• Layer 1 is the neighbor of the vertex in Layer 0, excluding vertices seen
in previous layers.

• Layer 2 is the neighbors of the vertices in Layer 1, excluding vertices
seen in previous layers.

• This goes on until there are no more unvisited neighbors left to visit.

Notice that this discipline of exploration visits vertices in a breadth-first
manner, hence the name breadth-first search.

F0

s

F1
F2

...

Breadth-first search (BFS)
explores the graph in layers as
if it is radiating from the source

vertex in increasing order of
“hop count.” The frontiers are,

by definition, disjoint, but
vertices of the same frontier

may be neighbors.

To begin formalizing the process, we introduce the term the i-th frontier,
denoted by Fi, for the set of vertices in layer i. In this notation, we can spell
out the above idea as follows: First, the 0-th frontier consists of only the
source vertex, hence F0 = {s}. Each subsequent frontier is the neighbors of the
preceding one, with vertices that have been seen before excluded. That is,

Fi+1 = N(Fi) \Xi,

where we define Xi =
⋃i
k=0 Fk to mean all the vertices that have been seen in

layers at most i. Later, it will be more convenient to equivalently express Xi
iteratively as X0 = F0 and Xi+1 = Xi ∪ Fi+1.

In this notation, the breadth-first search algorithm works as follows:

Algorithm 13.1: BFS(G = (V ,E), s) — Breadth-first search algorithm

F0 ← {s}, X0 ← {s}, i← 0
while Fi 6= ∅ do

Fi+1 ← NG(Fi) \Xi // Derive the next frontier of vertices
Xi+1 ← Xi ∪ Fi+1 // Remember what has been seen
i← i+ 1

return Xi

*A graph is bipartite if the vertices can be partitioned into two parts such that the endpoints of
every edge span both parts.

“book-main” — 2021/11/24 — 22:10 — page 231 — #243

§13.3 Graph Traversal 231

An example is in order to illustrate a run of the algorithm.

Example. Consider the graph in Figure 13.2. If we start with the source
vertex D, running the BFS algorithm results in have the following Fi’s
and Xi’s:

i Fi Xi

0 {D} {D}
1 {E} {D, E}
2 {A, C, B} {D, E, A, C, B}
3 ∅ {D, E, A, C, B}

Observations and Applications

From this setup, several properties are clear:

• The i-th frontier Fi is the set of vertices that are exactly at i hops away
from the starting point s. By hops, we mean the shortest path in terms
of edge count from the source requires that many edges.

• The final Xi contains all vertices reachable from s.

These properties directly mean breadth-first search can be used to help solve
the following problems:

• find all the vertices reachable from a vertex v;

• find if an undirected graph is connected (i.e., all the vertices can reach
each other);

• find the shortest path (in terms of edge count) from a source vertex s to
all other reachable vertices; and

• check if a graph is bipartite (Exercise 13.8.).

Basic BFS Implementation

Implementing the basic breadth-first search algorithm is straightforward.
Here, we will focus on implementing it for undirected graphs and will make
use of the UndirectedGraph interface developed earlier in this chapter. We
will keep the frontier sets and visited sets as Java’s Sets, in particular the
HashSet data structure.

We begin by describing how to derive the neighbors of a set of vertices, a
computation that is central to the derivation of the next frontier. The code
below takes as input a graph G and a set of vertices F, intended to be the
current frontier set. It returns the union of the neighbors of the vertices of
F—effectively the set N(F).

Set<Vertex> nbrs(UndirectedGraph<Vertex> G, Set<Vertex> F) {
Set<Vertex> nbrSet = new HashSet<>();
for (Vertex src: F) {

for (Vertex dst: G.adj(src)) { nbrSet.add(dst); }
}
return nbrSet;

}

“book-main” — 2021/11/24 — 22:10 — page 232 — #244

232 CHAP 13: BASIC GRAPH ALGORITHMS

Having written this utility function, the breadth-first search code itself is
simple†, mimicking the algorithm’s description discussed earlier.

public Set<Vertex> bfs(UndirectedGraph<Vertex> G, Vertex s) {
Set<Vertex> frontier = new HashSet<>(List.of(s));
Set<Vertex> visited = new HashSet<>(List.of(s));

while (!frontier.isEmpty()) {
frontier = nbrs(G, frontier);
frontier.removeAll(visited); // nbrs(frontier) - visited
visited.addAll(frontier);

}

return visited;
}

Remarks: The view and implementation of breadth-first search in this book
makes it clear that vertices are looked at layer by layer. Hence, the shortest
edge-count property is self-evident. The overall running time of the algorithm,
however, requires some analysis, which will be discussed soon. On the
other hand, breadth-first search is more traditionally implemented using a
queue: The queue stores vertices in the current and future frontiers. Until the
queue becomes empty, the vertex at the front of the queue is removed and its
unvisited neighbors are added to the queue. This discipline guarantees that
the ordering in the queue respects the frontier ordering.

Running Time Analysis

How fast is the breadth-first search algorithm implemented above? We start by
analyzing the running time of the nbrs function. Consider the nbrs function.
If an adjacency map is used, .adj is an O(1)-operation. Moreover, each .add
on the HashSet takes O(1) time. Therefore, because the outer loop is run for
each vertex v in F, the inner loop takes O(deg(v)) time for that vertex v and
the overall running time of a nbrs call is given by

O

∑
v∈F

1 + deg(v)

 ,

where the 1 term is added to account for when that vertex has no neighbors
but some constant work is still required to look at that vertex itself.

The total running time of BFS can now be analyzed as follows: Suppose the
breadth-first search algorithm ran for d iterations, generating F0, F1, . . . , Fd,
where Fd = ∅. Observe that in each iteration, the running time of .removeAll
and .addAll is at most the running time of nbrs. Hence, in terms of big-O, the

†Readers may be concerned about the running time of removeAll. It turns out removeAll on a
HashSet takes time proportional to the size of the smaller set.

“book-main” — 2021/11/24 — 22:10 — page 233 — #245

§13.3 Graph Traversal 233

total running time is given by

d∑
i=1

∑
v∈Fi−1

1 + deg(v).

By construction, the frontiers are disjoint, i.e., for all i 6= j, Fi ∩ Fj = ∅.
This means that each vertex v ∈ V appears at most once in all the frontiers
combined. Thus, this summation is upper-bounded by

d∑
i=1

∑
v∈Fi−1

1 + deg(v) 6
∑
v∈V

1 + deg(v) = n+ 2m,

where the last step used the common graph theoretic fact that
∑
v∈V deg(v) =

2m (Exercise 13.2.). Hence, we conclude that the running time of breadth-first
search is bounded by O(n+m).

Remarks: This running time is quite remarkable. The size of the graph with
n vertices andm edges is approximately n+m. The fact that the total running
time is n+ 2m = O(n+m) means that the algorithm merely looks at each
edge at most twice and overall performs no more work than the footprint of
the graph itself.

BFS: Remember the Way Back Home

The basic implementation we just discussed returns the set of vertices reach-
able from the source. Often, we would like to know more, for example, the
distance of each vertex from the source vertex s or the actual shortest path
from s to some vertex of interest v. It turns out to be easy to extend BFS for
these purposes.

The main idea will be to remember as a vertex is entered into a frontier
how that vertex is reached. To offer an example, consider the following graph
and its frontiers. If we remember for each vertex v which vertex u enters it
into the frontier, we will have the structure in Figure 13.4.

A B C D

E F G H

I J K L

M N O P

Q

R

S

T

start

A B C D

E F G H

I J K L

M N O P

Q

R

S

T

F0 F1 F2 F3

F4

F5

F6F7

Figure 13.3: An undirected graph and its corresponding frontiers

The arrow X→ Y means X is
entered into the frontier by Y,
i.e., the BFS exploration
reaches X via Y.

A

E F B

C

G D

HJ K L

POI

N

M

Figure 13.4: The tree struc-
ture corresponding to the
BFS traversal of the graph
in Figure 13.3

“book-main” — 2021/11/24 — 22:10 — page 234 — #246

234 CHAP 13: BASIC GRAPH ALGORITHMS

Such a structure is a tree; we call it the breadth-first search tree of a BFS
traversal. With this tree, figuring out the shortest path to v is simply a matter
of walking from v to s and reversing the path. Hence, the remaining question
is, how to update the code to store this tree?

First, we will update the nbrs function to return a Map instead of a Set.
This Map will remember, as has been discussed, for each vertex which vertex
entered it into the neighbor set, like so:

Map<Vertex, Vertex> nbrs(UndirectedGraph<Vertex> G,
Set<Vertex> F) {

Map<Vertex, Vertex> nbrSet = new HashMap<>();
for (Vertex src: F) {

for (Vertex dst: G.adj(src))
nbrSet.put(dst, src);

}
return nbrSet;

}

This function is rather intricate and deserves further discussion. An exam-
ple run is now in order.

Example. Suppose we run nbrs on the graph in Figure 13.3 with F =

{G, D}. We will have the following returned:

{C: D, H: D, L: G, K: G, J: G}

Notice that C could have come from either D or G; either works fine.

We are now positioned to update the breadth-first search itself. The BFS
tree will stored as a child-to-parent map inside visited. That is to say,
visited.get(u) returns the parent in the BFS tree of u.

Code 13.2: Extended breadth-first search.

1 Map<Vertex, Vertex> bfs(UndirectedGraph<Vertex> G, Vertex s) {
2 Map<Vertex, Vertex> frontier = new HashMap<>();
3 Map<Vertex, Vertex> visited = new HashMap<>();
4

5 frontier.put(s, null); visited.put(s, null);
6

7 while (!frontier.isEmpty()) {
8 frontier = nbrs(G, frontier.keySet());
9 // nbrs(frontier) - visited

10 frontier.keySet().removeAll(visited.keySet());
11 visited.putAll(frontier);
12 }
13

14 return visited;
15 }

The running time stays the same. To deeply understand the implementa-
tion, readers are encouraged to step through this updated implementation

“book-main” — 2021/11/24 — 22:10 — page 235 — #247

§13.3 Graph Traversal 235

using the mesh graph in Figure 13.3. The bits where the new frontier is de-
rived and how the visited map is updated are somewhat delicate. Below, we
give the end result.

Example. The updated BFS implementation when run on the graph in
Figure 13.3 returns the map

{A: null, E: A, F: A, B: A, C: B, G: C, D: C, H: D,
J: G, K: G, L: G, P: L, I: J, O: J, N: I, M: N}

Other Traversal Techniques

We have just discussed breadth-first search—a traversal strategy that explores
vertices in a breadth-first manner. Other traversal strategies exist and are
useful for answering other kinds of questions. We will briefly look at two
other traversal techniques now.

Depth-First Search. Depth-first search (DFS) is an equally common traver-
sal strategy. As the name suggests, this strategy focuses on going deep—i.e.,
it will go as deep as it can until it runs out of unvisited vertices, at which
point it backs out until it reaches a vertex that has an unvisited neighbor, then
traverses to that vertex and continues the same manner. More precisely, the
following pseudocode shows how basic DFS works:

def dfs(G, v):
if v has not been visited:

mark v as visited
for each vertex u in G.adj(v):

dfs(G, u)

Example. In contrast to
breadth-first search, the
depth-first search traversal of
the graph in Figure 13.2
starting at the same vertex D
will be D, E, B, A, C (among
many possible traversals).

Depth-first search can be used to find all vertices reachable from a starting
point (the same use case as BFS), to verify whether a graph is connected,
and to generate a spanning tree. But this traversal strategy does not give the
shortest path. However, because it will not back out until it has exhausted
all reachable vertices, it is useful in many other applications such as cycle
detection‡ and topological sorting§ These standard graph problems, however,
are beyond the scope of this book.

 Tips

In real code, DFS is implemented as a recursive program or through
the help of a stack data structure.

Priority-First Search. Another common traversal strategy is to pick the next
vertex to visit based on priority. That is to say, each vertex is given a priority,
which may change over time, and the next vertex to visit is the highest
priority vertex that has not been visited so far. This strategy is useful for

‡Given a graph, directed or undirected, is there a cycle?
§Given a directed, acyclic graph (DAG), find an ordering of the graph’s vertices v1,v2, . . . ,vn
such that if there is an edge from vi to vj, then vj comes after vi in the ordering.

“book-main” — 2021/11/24 — 22:10 — page 236 — #248

236 CHAP 13: BASIC GRAPH ALGORITHMS

finding shortest paths in cases where the cost on each edge may be different
and one seeks to minimize the total cost (e.g., distance traveled).

13.4 Minimum Spanning Trees

How many edges have to be retained to connect up an undirected graph with
n vertices? For motivation, consider a graph with 6 vertices and 7 edges:

a b c d e

f

Figure 13.5: An undirected graph: what is the fewest number of edges necessary
to connect up all these vertices?

What’s a subgraph? A
subgraph of a graph G is a

graph forming by taking a
subset of the vertices and

edges of G. Hence, the
subgraph has some or all of

the vertices and edges of the
original graph.

A moment’s thought suggests that n − 1 edges are necessary for an n-
vertex graph to be connected. Indeed, it has been shown that if a graph is a
connected graph, the structure that has the fewest edges which can connect
up all the vertices is a spanning tree. As the name suggests, a spanning tree is
a tree on all the vertices—i.e., it spans the graph, as in it stretches out to all
these vertices and connect them up.

Definition 13.3 (Spanning Tree). A spanning tree T of an undirected graph
G = (V ,E) is a subgraph of G such that T is a tree that includes all
vertices of V .

Example. The grid graph below is made up of 10 vertices and 13 edges.
There are many possible spanning trees on this graph. One possible
spanning tree is shown in thick edges.

1

8

2

9

3

10

4

11

5

12

6

13

7

14

Notice that this spanning tree is not the only one. There are many other
possible spanning trees.

Weighted Graphs and Representation

A B

C

DE

25

5
7

9

11

12

A Weighted Graph.

Our graphs so far are made up simply of vertices and edges connecting them.
They could be directed or undirected. At some level, all the edges are equal.
In many applications, though, we may wish to annotate each of these edges
with a label or sometimes a number representing, e.g., its strength or its cost.
To add such annotations to a graph, we can just graphically add these labels
next to the edges.

“book-main” — 2021/11/24 — 22:10 — page 237 — #249

§13.4 Minimum Spanning Trees 237

Mathematically, we add these annotations as a side function. Because these
annotations are often weights, we call such graphs weighted graphs:

Definition 13.4. A weight graph, denoted by G = (V ,E,w), is a graph G,
together with a weight functionw : E→ L, where L is the set of possible
annotations.

Often, the set L is simply R+ (the positive reals). In this view, for every
edge e, w(e) gives the label (i.e., weight) on that edge.

Representation in Code. One possibility is to strictly follow the mathemati-
cal definition and store on the side a Map from every edge to its label/weight.
However, we most often wish to access the label/weight on an edge at the
same time we access that edge. This motivates a representation that bundles
the label/weight with the associated edge. To accomplish this, instead of
keeping a Map<Vertex, Set<Vertex>> like we did for the unweighted case,
we will keep a map Map<Vertex, Map<Vertex, Label>> from each vertex to
a map storing for each neighbor the label/weight associated with that edge.
Specifically, if G is such a map, then G.get(u) returns a Map<Vertex, Label>,
where the keys are the neighbors of u and the value for the key v will be the
labels/weights corresponding to the edge uv.

An example is in order:

Example. The weighted graph example on the previous page has ver-
tices named A, B, Their labels/weights are integers. This can be
stored as a

Map<String, Map<String, Integer>>

which reflects the fact that each vertex is referred to by a String. Hence,
the graph is stored as follows (we are rendering the map in Python’s
dictionary notation for compactness):

G = {
"A": {"B": 25, "D": 5, "E": 7},
"B": {"A": 25, "C": 9},
"C": {"B": 9, "D": 12},
"D": {"A": 5, "C": 12, "E": 11},
"E": {"A": 7, "D": 11}

}

Notice that for instance, the entry corresponding to "D" is
{"A": 5, "C": 12, "E": 11}, which indicates that "D" has neighbors A,
C, and E. Moreover, as an example, the edge DC has weight 12.

An Interface for Weighted Undirected Graph. Small modifications to the
UndirectedGraph will make our previously-discussed interface ready to take
on labels/weights. Specifically, we will:

• make adj return a Map<Vertex, Label> instead of an Iterable<Vertex>.
• add a method Label getWeight(Vertex u, Vertex v).

“book-main” — 2021/11/24 — 22:10 — page 238 — #250

238 CHAP 13: BASIC GRAPH ALGORITHMS

The Minimum Spanning Tree Problem

A B

C

DE

25

5
7

9

11

12

The highlighted edges form a
spanning tree with weight

w(T) = 7 + 5 + 12 + 9 = 33,
which happens to be the

minimum possible cost. All
other spanning trees, as can

be checked, have a higher cost.

We have just discussed how to model a graph so that the edges can carry
information. In practice, various kinds of information are stored on the edges.
For example, in a road network, the edge weights could represent the distance
or fuel cost to drive along them. In a power distribution graph, the edges
could represent transmission lines and the weights could represent the lengths
or how much power is needed.

Earlier, we saw that n− 1 edges are necessary to connect up an undirected
graph with n nodes. If edge weights represent how costly selecting the edges
is, then different spanning trees do not necessary have the same cost—some
less expensive than others. We wish to find one that is the least costly.

The minimum spanning tree (MST) problem is to find a spanning tree whose
total weight is the smallest possible among all spanning trees on the given
graph. More formally, the minimum (weight) spanning tree (MST) problem
is, given an connected undirected graph G = (V ,E), where each edge e has
weightw(e) > 0, find a spanning tree of minimum weight (i.e., the sum of the
weights of the edges). That is to say, we are interested in finding the spanning
tree T that minimizes

w(T) =
∑

e∈E(T)
w(e).

It is clear that for any given connected graph, there is a spanning tree that
has the lowest cost. But how many MSTs are there? The following lemma
makes our lives easy when the weights are distinct:

Lemma 13.5. There is a unique minimum spanning tree of G provided
that G is connected and has distinct weights.

We leave the proof of this lemma as Exercise 13.3. We note, however,
that even though there may be duplicate weights, we could break ties in a
consistent way and make them distinct for the purpose of MST. Hence, in the
rest of this chapter, we will assume that the weight edges are distinct¶.

An Underlying Principle: Light-Edge Rule

How can we find the minimum spanning tree of a graph quickly? The main
property that underlines many MST algorithms is a simple fact about cuts in
a graph. To begin, we’ll make a few observations about a tree: If T is a tree,

• adding an edge between vertices of T creates a cycle.

• removing an edge from T breaks it into exactly two trees.

(In some sense, a tree is the minimally connected graph on this set of vertices.)

What is a cut? For a graph G = (V ,E), a cut is defined in terms of a proper
subset U ⊂ V , where U 6= ∅ and U 6= V . This set U partitions the graph into
(U,V \U), and we refer to the edges between the two parts as the cut edges
E(U,U), where as is typical in literature, we write U = V \U. The subset U

¶This is not a requirement for the implementation in practice, but it simplifies the exposition.

“book-main” — 2021/11/24 — 22:10 — page 239 — #251

§13.4 Minimum Spanning Trees 239

might include a single vertex v, in which case the cut edges would be all edges
incident on v. But the subset Umust be a proper subset of V (i.e., U 6= ∅ and
U 6= V). Hence, both sides of the cut are nonempty.

Example. Below, an example cut is U = {A, E}, which partitions the
graph into two portions as indicated by the dashed line. The edges that
go across the cut E(U,U) are AB, AD, and ED.

A B

C

DE

25

5
7

9

11

12

Light-Edge Rule. Given any cut in a graph G, the following theorem states
that the lightest edge across the cut is in the MST of G:

Theorem 13.6 (Light-Edge Rule). Let G = (V ,E,w) be a connected undi-
rected weighted graph with distinct edge weights. For any nonempty
proper subsetU ⊆ V , the minimum weight edge e betweenU and V \U

is in the minimum spanning tree MST(G) of G.

E(U,V\U)

v

y

x

u

From a given tree T , form T ′ by
removing f = {x,y} and adding
e = {u, v}. The argument in the
proof shows that w(T ′) is
smaller than the original weight
w(T).

Proof. The proof is by contradiction. Let a cut (U,V \ U) be given.
We will denote by e = {u, v} the lightest edge going across this cut.
Now consider the minimum spanning tree (MST) T of G. Suppose for
a contradiction that e is not in the MST T . Since the MST spans the
graph, there must be a path P between u and v using just the edges of
the MST. This path must cross the cut between U and V \U at least once
since u and v are on the opposite sides. Call an edge on P that crosses
the cut f = {x,y}. By attaching e to T and removing f, we form a new
spanning tree T ′ = T + e− f. Notice that T ′ is a spanning tree because
there are still n− 1 edges and all the vertices are still connected: any
path that went through f can now go through e instead. But importantly,
w(T ′) = w(T) +w(e) −w(f), and since w(e) < w(f), we have that
w(T ′) < w(T), which is a contradiction as we assumed T is an MST.
Hence, we conclude that e—the minimum-weighted edge across the cut
(U,V \U)—must appear in the MST.

Prim’s Algorithm

We apply the light-edge rule to derive an efficient algorithm for MST known
in the literature as Prim’s algorithm. The idea is to maintain a single, connected
tree and keep growing it one edge at a time using the light-edge rule until we
finally have the MST. Algorithm 13.2 shows this idea in more detail.

Correctness of this algorithm follows immediately from the light-edge rule.
Notice that by construction, it is an invariant that at the end of iteration i, T

“book-main” — 2021/11/24 — 22:10 — page 240 — #252

240 CHAP 13: BASIC GRAPH ALGORITHMS

Algorithm 13.2: Prim(G = (V ,E,w)) — Prim’s algorithm for MST

Pick a starting vertex s ∈ V arbitrarily
Let U0 ← {s}, T ← {}

for i = 1, 2, . . . ,n− 1 do
Apply the light-edge rule on the cut (Ui−1,V \Ui−1)
Let ei = (x,y) be the minimum-weighted edge across the cut
Add ei to T
Set Ui ← Ui−1 ∪ {x,y} // Either x or y was already in Ui−1

return T

is connected and is a spanning tree on the vertex set Ui. Furthermore, there
cannot be any cycle because each ei joins Ui−1 with a vertex outside of Ui−1,
extending it to Ui.

T

Prim’s algorithm maintains a
connected spanning tree T and

in each step, it locates the
lightest edge across the cut

(dashed line) and adds it to T .

Example. Suppose vertex C is used as the starting point, so U0 = {C}.
The lightest edge across the cut (U0,U0) is BC, with weight 9. Therefore,
U1 = {B, C}. Then, the lightest edge across the cut (U1,U1) is 12, so U2 =

{B, C, D}. Prim’s algorithm continues in this way until the minimum
spanning tree on this graph is formed.

A B

C

DE

25

5
7

9

11

12

A B

C

DE

25

5
7

9

11

12

A B

C

DE

25

5
7

9

11

12

A B

C

DE

25

5
7

9

11

12

A B

C

DE

25

5
7

9

11

12

But in real code, how can one find the minimum-weighted edge across
the cut efficiently? Code 13.3 shows an implementation in Java. The tree
vertices (Ui) are maintained in the set treeVertices, initially containing just
the arbitrary starting vertex {s}. To quickly find the minimum-weighted edge
across the cut, we use a priority queue. Ideally, we would like the priority
queue to store exactly the edges across the current cut. However, the cut
changes with every new edge added to the MST and it is too expensive to
keep the priority queue up-to-date with the current cut. Therefore, we settle
with the invariant that the priority queue contains two types of edges:

• Edges that are crossing the current cut; and

• Edges that used to cross a previous cut but are currently internal to tree
side (i.e., both endpoints are in Ui).

For this reason, when the minimum-weighted edge is removed from the
priority queue, we have to check whether it is still crossing the current cut. It
is easy to see that if this edge is indeed crossing the current cut, the edge is

“book-main” — 2021/11/24 — 22:10 — page 241 — #253

§13.4 Minimum Spanning Trees 241

the minimum-weighted edge crossing the current cut.

Then, when a new edge e is added to the tree T , the endpoint that is new
to the tree will be “expanded on.” The edges coming out from this vertex will
be new to the current cut.

Code 13.3: Prim’s algorithm for minimum spanning tree.

1 List<Edge> primMST(WeightedUndirectedGraph<Vertex, Weight> G) {
2 PriorityQueue<Edge> pq = new PriorityQueue<Edge>(
3 (Edge x, Edge y) -> x.cost.compareTo(y.cost)
4);
5 List<Edge> T = new ArrayList<>();
6 Set<Vertex> treeVertices = new HashSet<>();
7 expandNeighbors(0, G, pq, treeVertices);
8 while (!pq.isEmpty()) {
9 Edge e = pq.poll();

10 if (treeVertices.contains(e.u) &&
11 treeVertices.contains(e.v))
12 continue; // e is internal, skip
13 T.add(e); // e is the lightest edge across the cut
14

15 // Determine which endpoint is new to T
16 if (!treeVertices.contains(e.u))
17 expandNeighbors(e.u, G, pq, treeVertices);
18 else
19 expandNeighbors(e.v, G, pq, treeVertices);
20 }
21 return T;
22 }
23

24 void expandNeighbors(Vertex vtx,
25 WeightedUndirectedGraph<Vertex, Weight> G,
26 PriorityQueue<Edge> pq, Set<Vertex> treeVertices) {
27 treeVertices.add(vtx);
28 for (Vertex w : G.adj(vtx)) {
29 // put into the queue the edge (vtx, w) and its weight
30 if (!treeVertices.contains(w))
31 pq.add(G.getEdge(vtx, w));
32 }
33 }

Running Time. What’s the running time of this code? We reason as follows:
Each vertex can be an argument to expandNeighbors at most once. Each time
it is called with v, the cost is O(deg(v) logn) as it goes over the neighbors of
v, adding each of the O(deg(v)) neighbors to the priority queue. Also, the
number of entries added to the priority queue by this vertex is deg(v). Hence,
the total cost due to the expandNeighbors function is

∑
v∈V deg(v) logn =

“book-main” — 2021/11/24 — 22:10 — page 242 — #254

242 CHAP 13: BASIC GRAPH ALGORITHMS

O(m logn). Notice also that the number of times the priority queue is added
to is at most

∑
v∈V deg(v) = 2m.

The total time of the while-loop can be bounded as follows: We do not
know how many times exactly that loop will run. But we do know that (i)
each time it is run, it takes at most O(logn) time, excluding the time taken
by expandNeighbors. This O(logn) is due to the .poll call. Furthermore,
we know that (ii) the priority queue cannot be .poll-ed more than than the
number times it was added to. We have argued already that this number is at
most 2m. Hence, the total time of the while-loop is O(m logn), plus the time
taken by expandNeighbors. In all, we conclude that Prim’s algorithm runs in
O(m logn) time.

Kruskal’s Algorithm

Another MST algorithm that can be derived using the light-edge rule is
Kruskal’s algorithm. Unlike Prim’s algorithm, which maintains a single tree
and keeps on growing it, Kruskal’s algorithm maintains a forest (multiple
disjoint trees) and incrementally connects up the pieces to eventually form
the MST by considering edges in increasing order of their weights (i.e., light
to heavy). Initially, the forest contains n trees, each a singleton tree. In more
detail, Kruskal’s algorithm works as follows:

Algorithm 13.3: Kruskal(G = (V ,E,w)) — Kruskal’s algorithm

T ← {}

Sort the edges so w(e1) < w(e2) < · · · < w(em), where ei’s are the
edges of G

for i = 1, 2, . . . ,m do
Let {x,y}← ei (i.e., x and y are the endpoints of ei)
if x cannot reach y in T then

Add ei to T // Add to the MST

return T

Kruskal’s algorithm maintains a
spanning forest T (multiple

trees) and in each step, it
locates the lightest edge that
will not form a cycle. Adding
this to T combines two trees.

The algorithm is intuitive: To create the least expensive spanning tree,
we should aim to use the cheapest edges unless an edge cannot be used
(e.g., form a cycle). But mathematically, why does it result in the minimum
spanning tree? The light-edge rule we proved earlier has an answer. When
the algorithm considers ei = {x,y}, if ei does not form a cycle with existing
MST edges (i.e., x cannot reach y using existing edges of T), we know that it
crosses a cut described as follows: Let Ux be all the vertices reachable from x

using the edges of T so far. The cut of interest is the cut (Ux,V \Ux). Notice
that ei is the minimum-weighted edge crossing this cut since after all the
edges have been sorted and we consider them from small to large. Hence,
every edge added by Kruskal’s algorithm is part of the MST.

Example. The cheapest edge is AD with weight 5. Initially T is empty,
so A cannot reach D using the edges of T , so AD is added to T . The next
cheapest edges are AE and BC. For the same reason, they are added to
T , respectively. After that, the next edge to consider is ED, but E can
already reach D using the edges of T , so this edge is not added to T . We

“book-main” — 2021/11/24 — 22:10 — page 243 — #255

§13.4 Minimum Spanning Trees 243

continue in this manner until the whole MST is formed.

A B

C

DE

25

5
7

9

11

12

A B

C

DE

25

5
7

9

11

12

A B

C

DE

25

5
7

9

11

12

A B

C

DE

25

5
7

9

11

12

A B

C

DE

25

5
7

9

11

12

A B

C

DE

25

5
7

9

11

12

But how should we implement Kruskal’s algorithm in real code? It is clear
that the efficiency of the algorithm hinges on the fact that we can determine
quickly whether x can reach y using the edges of T . There is an elegant
data structure that can efficiently handle this task. Chapter 14 presents data
structures to represent disjoint sets, allowing the sets to be united and the
checking of whether two members belong in the same set. In this abstraction,
the members are vertices and two vertices are in the same set if they can reach
each other using the edges of T . Hence, adding an edge {x,y} has the effect of
uniting the set containing xwith the set containing y, and asking whether x
can reach y is the same as asking whether x and y belong in the same set. We
can update the algorithm’s description as follows:

Algorithm 13.4: Kruskal(G = (V ,E,w)) — Kruskal’s algorithm with
disjoint sets

T ← {}

Sort the edges so w(e1) < w(e2) < · · · < w(em), where ei’s are the
edges of G
D← disjoint-sets data structure with each vertex of V in its own set
for i = 1, 2, . . . ,m do

Let {x,y}← ei (i.e., x and y are the endpoints of ei)
if D.isConnected(x, y) then

Add ei to T // Add to the MST
D.link(x, y)

return T

Both isConnected and link can be supported inO(logn) time||. Therefore,
Kruskal’s algorithm can be implemented by first sorting the edges (expend-
ing O(m logn) time). After that, The for-loop is run m times, each taking
O(logn) time. Hence, the total running time is O(m logn). Readers may also
notice that the algorithm can stop as soon as T has accumulated n− 1 edges.
There is no need to continue past that point.

||Faster data structures exist but are not covered in this book.

“book-main” — 2021/11/24 — 22:10 — page 244 — #256

244 CHAP 13: BASIC GRAPH ALGORITHMS

Exercises

Exercise 13.1. Using the adjacency map representation discussed earlier in
the chapter, write a class UndirectedAdjMap<Vertex> that implements the
UndirectedGraph<Vertex> interface from Code 13.1. Use a HashMap for the
map implementation.

Exercise 13.2. Show that for an undirected graph G = (V ,E) with no self-
loops, the sum of the degrees is equal to twice the number of edges:∑

v∈V
deg(v) = 2m.

Exercise 13.3. Let G = (V ,E,w) be an undirected connected graph with
distinct edge weights. Show that G has a unique minimum spanning tree.

Exercise 13.4. You will extend to the breadth-first search implementation
discussed earlier in this chapter to return the number of edges on the shortest
path from the source to a given vertex. Specifically, given an undirected graph
and a source vertex s, write a method

Map<Integer, Integer> distTo(UndirectedGraph<Integer> G,
Integer s)

that returns a Map m such that for each vertex v, m.get(v) returns the number
of edges on the shortest path from s to v.

Exercise 13.5. You will extend to the breadth-first search implementation
discussed earlier in this chapter to report an actual shortest path. Specifically,
given an undirected graph and a pair of nodes, write a method

void findShortest(UndirectedGraph<Integer> G,
Integer a, Integer b)

that prints out the shortest path from vertex a to vertex b.

Exercise 13.6. Given a connected undirected graph, design an O(m+n)-time
algorithm that computes a spanning tree (necessarily a minimum-weighted
spanning tree) of the graph. Notice that the algorithms we studied for MST
are not fast enough here.

Exercise 13.7. Given a connected undirected graph, design an O(m+n)-time
algorithm to identify a vertex whose removal (removing that vertex and its
incident edges) does not disconnect the graph.

Exercise 13.8. Design and implement an O(m+n)-time algorithm to detect
whether or not a given undirected graph is bipartite. As was mentioned
earlier, a graph is bipartite if the vertices can be partitioned into two parts

“book-main” — 2021/11/24 — 22:10 — page 245 — #257

Notes for Chapter 13 245

(say red and blue) such that every edge has one endpoint in red and the other
in blue.

Exercise 13.9. Develop a complete implementation of Prim’s algorithm based
on Code 13.3 that runs in O(m logn) time.

Exercise 13.10. Develop an implementation of Kruskal’s algorithm that runs
in O(m logn) time. It is helpful to study the disjoint-sets data structure
chapter (Chapter 14) before completing this exercise.

Exercise 13.11. Develop an algorithm that runs in O(m logn+n) or faster to
determine whether a given graph has a unique minimum spanning tree.

Chapter Notes

Graph theory and graph algorithms have been extensively studied with a
vast literature behind them. For more exposition of mathematical graph
theory, check out the books by Lehman et al. [LLM15], Matoušek and
Nešetřil [MN98], and Diestel [Die12]. Easley and Kleinberg [EK10] explore
networks, crowds, and markets through graph-theoretic views. Excellent refer-
ences on graph representations, traversal techniques (e.g., breadth-first search,
depth-first search, etc.), and minimum-spanning tree algorithms (e.g., Prim’s
and Kruskal’s) include Cormen et al. [Cor+09], Sedgewick and Wayne [SW11],
and Goodrich et al. [GTG14]. For minimum spanning trees, Borůvka’s al-
gorithm is probably the oldest published algorithm and it happens to be
amendable to parallel computation.

“book-main” — 2021/11/24 — 22:10 — page 246 — #258

