
“book-main” — 2021/11/24 — 22:10 — page 205 — #217

Sets and Maps 12
Maps vs. Associate Arrays.
A map is sometimes called an
associate array because it
generalizes a normal array to
allow the indices into the array
to be a “richer” unique key, as
opposed to a number between
0 and n− 1, where n is the
size of the array.

A map is a data type designed for efficiently storing and retrieving a value
associated with each unique identifier known as a search key. The map data
type turns out to be one of the most significant and most versatile data types.
The map data type resembles a mathematical function f : D→ R, mapping a
key from a domainD to a value in the range R. That is to say, f(k) retrieves the
value associated with the key k. Depending on the programming language
used and the context in which the discussion arises, maps are also variously
known as associate arrays, dictionaries, and tables.

The search keys have to be unique whereas the values need not be. Together,
a pair of key and its associated value—a key-value pair—is known as an entry
in the map. Below are some application scenarios that fit the map abstraction:

The table below is an example
of what can be represented
using a map data type. The
keys have to be unique
because they are used to look
up a value. The values can
have repeats.

Key Value

Thai Baht
Japan Yen
German Euro
Greece Euro
USA Dollar

• A regular dictionary is a mapping from words to their definitions.
• A book’s index is a mapping from terms to the page numbers where the

terms appear.
• A university’s information is, in part, a mapping from student IDs to

student records.
• The domain name system (DNS) is, in part, a mapping from domain

names (e.g., muic.io) to IP addresses (e.g., 202.17.99.187).

12.1 A Map Data Type

What operations are commonly performed on a map? The main activities on the
map data type include: adding a new entry, updating an entry, retrieving
a value corresponding to a key, and removing an entry. In the view of an
abstract data type (ADT), a map keeps a collection of key-value entries while
supporting the following operations:

• get(k) — returns the value associated with a key k.
• put(k, v) — associates the value v with a key k.
• containsKey(k) — returns a Boolean indicating whether key k is present

in the collection.
• remove(k) — removes the key k and its associated value.

Apart from these defining operations, the following are convenience functions
often provided by the map data type:

205

“book-main” — 2021/11/24 — 22:10 — page 206 — #218

206 CHAP 12: SETS AND MAPS

Code 12.1: A minimal Map interface in Java.

1 public interface Map<K, V> {
2 // retrieve the value associated with a key key
3 V get(K key);
4

5 // associate value val with a key key
6 void put(K key, V val);
7

8 // does the map have this key?
9 boolean containsKey(K key);

10

11 // remove an entry for this key
12 void remove(K key);
13

14 // the number of entries
15 int size();
16

17 // is it empty?
18 boolean isEmpty();
19 }

• size() — return the number of keys in the collection.
• isEmpty() — return whether the collection is empty.

This ADT translates to an interface in Java as shown in Code 12.1. The
interface uses a generic type K as a placeholder for the type of the keys and V,
for the values. Notice that the type of the keys and the type of the values are
often not the same.

Set

A Set is a close cousin of the Map data type. Some applications are only in-
terested in maintaining membership, i.e., a collection of keys. They have no
interest in associating each key with a value. In these applications, mathe-
matical sets are an appropriate abstraction. We define a basic set abstract data
type with the following operations:

• contains(k) — returns whether k is present in the set.
• add(k) — adds k to the set. If the element already exists, it has no effects.
• remove(k) — removes k from the set.

Apart from these, convenience functions such as size and isEmpty are usually
defined. This leads to an interface in Java as shown in Code 12.2.

Simple Use Case

Before we begin thinking about implementing the data types, let us take a
quick look at an example that uses such a data type as part of a larger program.

“book-main” — 2021/11/24 — 22:10 — page 207 — #219

§12.1 A Map Data Type 207

Code 12.2: A minimal Set interface in Java.

1 public interface Set<E> {
2 // does the set have this element?
3 boolean contains(E k);
4

5 // add this key to the set
6 void add(E k);
7

8 // remove an entry for this key
9 void remove(E k);

10

11 // the number of entries
12 int size();
13

14 // is it empty?
15 boolean isEmpty();
16 }

Example. Consider computing the histogram of a sequence of
numbers—that is to say, find for each number, the number of oc-
currences of that number. As a concrete example, for the sequence
{3, 1, 2, 1, 1, 2, 5}, we are to produce a table with the following
information:

Number Frequency

1 3
2 2
3 1
5 1

This can be conveniently computed, thanks to the map data type, where
we go over each element and keep the counts so far in a map:

Map<Integer, Integer> makeHistogram(List<Integer> seq) {
Map<Integer, Integer> histogram = ... // use a suitable Map
for (int elt: seq) {

if (histogram.containsKey(elt))
// add 1 to the corresponding count
histogram.put(elt, histogram.get(elt) + 1);

else
// a new number, so has a count of 1
histogram.put(elt, 1);

}
return histogram;

}

“book-main” — 2021/11/24 — 22:10 — page 208 — #220

208 CHAP 12: SETS AND MAPS

12.2 Basic Implementation Strategies

As with other data types we have considered, we are interested in supporting
the operations of the data type as fast as possible using as little space as we
can. There are two basic strategies that we have considered in the past for
keeping a collection.

We could keep the collection as a list of key-value pairs. This strategy
appears to be low maintenance but looks to be expensive for operations that
require looking up by key. While adding a new key is inexpensive, searching
for or updating a key amounts to performing linear search on the collection.

The look-up performance can be improved by keeping the list sorted by key.
While this strategy leads to a marked improvement in the lookup performance,
it is a high-maintenance option. While searching, thanks to binary search, is
now fast, keeping the list always sorted is expensive.

Crucially, in both strategies, the operations put and remove require that we
first locate the key in the list. If the list is sorted, we could use binary search
to locate the key; otherwise, it seems that linear search is about the best thing
one can do. Following that, we either update the value or delete that entry
altogether. This leads to the following cost table, where we use n to denote
the number of keys kept in the table:

Operation Unsorted List Sorted List

get(k) O(n) O(logn)
containsKey(k) O(n) O(logn)
put(k, v) O(n) O(logn)

or O(n) if k is new
remove(k) O(n) O(n)

Space Usage O(n) O(n)

Table 12.1: Running time of basic implementation strategies for Map.

In the rest of this chapter, we present two more advanced techniques for
maintaining the Map data type more efficiently.

12.3 Introducing Trees and Binary Trees

The data structures we have seen so far share a common property: they
are linear—there is a sense of an absolute position on a line from left to
right. Often, this confines our thinking and limits what we can achieve.
It is possible, however, to break this pattern. One of the most important
“nonlinear” structures is the tree structure. We will begin by developing an
intuitive understanding of what trees are.

Instead of organizing data linearly, a tree is a hierarchical structure with a
few notable properties. Each item in a tree is generically called a node. There’s
a special top element known as the root. Every node has zero or more children.
When a node doesn’t have any children, it is called a leaf. In Computer Science,

“book-main” — 2021/11/24 — 22:10 — page 209 — #221

§12.3 Introducing Trees and Binary Trees 209

we often draw trees with its root node at the top and their descendants in
subsequent layers below that. An example of a tree structure is given below.

Home

Desktop Documents Downloads Music Pictures

ds python ics party1 party2

lects assn

root nodeLevel 0

Level 1

Level 2

Level 3

More formally, we can define a tree as follows:

Definition 12.1. A tree T is an ordered pair (N,p), where N is a set of
nodes that keep the tree elements and p : N → N ∪ {⊥} is a function
storing a child-parent relationship satisfying the following properties:

• If the tree is nonempty, there is a unique node r ∈ N, called the
root, such that p(r) = ⊥, that is, it has no parent.

• Every node other than r has a parent inN, that is, p(v) 6= ⊥ for all
v 6= r. The children of a node w are those v such that p(v) = w.

• The parent chain of every vertex other than the root itself even-
tually reaches the root r. In other words, for every v ∈ N, v 6= r,
p(p(· · ·p(v))) = r.

s

t q x

m f b r e

root

leaves

As an example, consider the tree diagram on the right and its correspond-
ing formal description. In this particular example, the set of nodes N is
{s, t,q, x,m, f,b, r, e}, and the parent-child relationship p is as follows:

Node Parent

s p(s) = ⊥
t p(t) = s

q p(q) = s

x p(x) = s

m p(m) = q

Node Parent

f p(s) = q

b p(t) = x

r p(q) = x

e p(x) = x

Trees are used both to “physically” represent data and to conceptually
express ideas (help shape our thought, though a real tree is perhaps never
stored anywhere). In the former case, we need to be able to materialize them—
we need to represent them in our program. How to represent a tree structure in a
computer program?

“book-main” — 2021/11/24 — 22:10 — page 210 — #222

210 CHAP 12: SETS AND MAPS

Representing A Generic Tree. With this definition in mind, we could rep-
resent a tree by storing this p function, for example, as a Map—provided we
already have a good Map implementation. This allows for efficiently looking
up the parent of a given node, but it would be hard to determine the children
of a particular node. In code, this means, for example, storing the function
p as a HashMap.Java has two main

implementations of the Map

data type: HashMap and
TreeMap. They are based on

different data structuring
techniques and offer different

performance tradeoffs.

The goal here would be if we have Map<Integer, Integer> p
that represents p, then p.get(u) should return the identity of the parent of u.

This particular representation is unlikely practical especially when we are
trying to use trees to implement a Map in the first place. Let us take a look at a
specific variant of trees and another representation that directly remembers
the children of each node.

Binary Trees

Of particular interest to us is the so-called binary trees. These are tree structures
where each node can have at most two children. We will see how to take
advantage of such a structure to obtain a fast implementation of many data
structures in this chapter and the chapters that follow.

We will now turn our focus to binary trees as they are what we will mainly
encounter in the rest of this book.

There are many ways to encode a tree structure in a program you write.
Indeed, modern languages such as Python, Java, C/C++, etc. provide various
mechanisms for expressing them. Here, we will look at a general representa-
tion: a representation using a node class and references.

As our running example, we’ll consider the following trees:

"x"

Tree 1
"y"

Tree 2

"d" "e"

"a"

Tree 3

"b"

"h"

"c"

"f"

"p" "q"

Figure 12.1: Example binary trees of different sizes

Using nodes and references. To motivate this representation, consider the
second tree (above). We would like for each node to store its data, together
with its two children—and we distinguish between the left child and the right
child. Hence, we can define a class that represents each node individually. We
will then link them up to form a tree. Specifically, our class will store infor-
mation about this very node itself, for instance, the key and value associated
with this node. It will store what the left subtree and the right subtree are (as
references). Our preliminary cut will look as follows:

“book-main” — 2021/11/24 — 22:10 — page 211 — #223

§12.3 Introducing Trees and Binary Trees 211

1 class TreeNode<E> {
2 E key;
3 TreeNode<E> left;
4 TreeNode<E> right;
5

6 TreeNode(E key, TreeNode<E> left, TreeNode<E> right) {
7 this.key=key; this.left=left; this.right=right;
8 }
9

10 TreeNode(E key) { // Call the constructor above
11 this(key, null, null);
12 }
13 }

In this representation, we can therefore represent the trees in our examples
as follows:

TreeNode<String> tree1 = new TreeNode<>("x");
TreeNode<String> tree2 =

new TreeNode<>("y",
new TreeNode<>("d"),
new TreeNode<>("e"));

TreeNode<String> tree3 =
new TreeNode<>("a",

new TreeNode<>("b", null, new TreeNode<>("h")),
new TreeNode<>("c",

new TreeNode<>("f", new TreeNode<>("p"),
new TreeNode<>("q")),
null));

Before we move on, let us write a function that directly works with this
tree representation. We are to write a function depth that returns the depth of
the tree (i.e., the length of the longest path in the tree).

1 int depth(TreeNode<E> u) {
2 if (u==null)
3 return 0;
4 else
5 return 1 + Math.max(depth(u.left), depth(u.right));
6 }

Now that we know how to represent binary trees, we will put that knowl-
edge to use. Two important ideas are in order: (1) the ability to systematically
traverse the tree in different order, and (2) orderly data organization strategies
that will make navigating trees easier.

Binary Tree Traversal

We will study a systematic way of visiting all nodes in a tree. Given a tree
T , a traversal of T prescribes an ordering in which nodes of T are visited.

“book-main” — 2021/11/24 — 22:10 — page 212 — #224

212 CHAP 12: SETS AND MAPS

When a node is visited, the specific action taken at that node depends on the
particular application. This could be simply printing out the data at that node,
incrementing a counter, or some complex computation.

For binary trees, there are three common traversal patterns that we will
consider in turn: (1) preorder traversal, (2) inorder traversal, and (3) postorder
traversal. All these patterns are best described recursively.

Preorder. Visit the node
itself—then visit both
children recursively and
return:

def preorder(x):
visit(x)

preorder(x.left)

preorder(x.right)

Inorder. Visit the left
recursively—then visit
the node, and visit the
right recursively.

def inorder(x):
inorder(x.left)

visit(x)

inorder(x.right)

Postorder. Visit both
children recursively—
then visit the node itself
and return:

def post(x):
post(x.left)

post(x.right)

visit(x)

Example. The figure below shows the order in which nodes are visited
when these common traversal patterns are employed.

a

b d

f

e

g

h i

c

a

b d

f

e

g

h i

c

a

b d

f

e

g

h i

c

pre-‐order in-‐order post-‐order

How are these used in practice? We have seen numerous applications of
the for-each construct on lists. It is best to think of these patterns as for-each
constructs for trees, but since trees are not flat, there are many patterns to use.
Below is a short list of common applications.

• Example 1: An arithmetic expression can be represented as a tree. Then,
we need to traverse that tree to evaluate it or to manipulate it in some
way.

• Example 2: The table of contents of a book can be seen as a tree. Printing
this out involves tree traversal.

• Example 3: An HTML page is represented in the browser as a DOM
(document-object model) tree. If we want a program to go over these
objects (e.g., to update color or other property), that is a tree traversal.

“book-main” — 2021/11/24 — 22:10 — page 213 — #225

§12.4 Binary Search Trees 213

12.4 Binary Search Trees

10 21 32 53 74 85 96

53

21 85

10 32 74 96

Remember that a perfect
binary tree (as shown) is one in
which all internal nodes have
two children and all leaves are
at the same level.

To motivate this structure, on right, consider the sorted array and a tree that
we superimpose on. The tree is a perfect binary tree on 7 nodes. These nodes
coincidentally—or perhaps not—are labeled according to numbers from the
sorted array below the tree. In many ways, this should remind us of binary
search. When we look up a key using binary search, the walk from the root to
that key in the tree is exactly the comparisons we make in binary search.

In the general sense of a Map, the collection is not fixed and our goal is to be
as efficient as binary search in the face of new items getting added, existing
items getting removed, etc. How can we maintain, perhaps implicitly, a sorted
collection while supporting insertion, deletion, and search efficiently?

Remember that a binary tree is a tree in which every node in the tree has
at most two children. Binary search trees (BSTs) are a binary-tree-based data
structure that can be used to store and search for items that satisfy a total
order. For a bit of history, BSTs date back to around 1960, usually credited to
Windley, Booth, Colin, and Hibbard.

A Binary Search Tree with a
root, and left and right
(potentially empty) subtrees.

key: ...

value:

BST

(left subtree)

BST
(right

subtree)

We generally work with the assumption that the keys are unique. More
precisely, we define the binary search tree data structure as follows:

Definition 12.2. A binary search tree (BST) is defined recursively as
(a) an empty tree; or
(b) a node storing a key-value pair (key, value), together with two

BSTs, known as the left and right subtrees, where the left subtree
contains only keys that are smaller than key and the right subtree
contains only keys that are larger than key.

Therefore, a binary search tree satisfies the following invariant:

For any node v, all of the left subtree is smaller than the key
at v, which is smaller still than all of the right subtree.

In a standard implementation, one keeps the following attributes for each
node: key, value, left, and right, which represent, respectively, the key, the
value, the (reference to the) left child, and the (reference to the) right child.

Example. We give a few examples of binary search trees on the keys
1, 2, . . . , 7, omitting their values. Notice that some of these trees may
be lopsided, some completely balanced, as the BST definition doesn’t
prescribe any exact shape.

4

2

1 3

6

5 7

1

2

3

. . .

7

7

6

5

. . .

1

“book-main” — 2021/11/24 — 22:10 — page 214 — #226

214 CHAP 12: SETS AND MAPS

Representing BST Nodes

Let’s first work with BST nodes assuming that both the key and the value are
integers. In this case, we’ll just need a class that keeps two integers—let’s call
them key and value—as well as the two children.

public class BST {
int key, value;
BST left, right;

}

In many cases, we want our implementation to be more general and
support a wide variety of types. In this case, the class will be declared as
BST<K, V> with the intent that K is the key type and V is the value type. It is
necessary that the key type is Comparable because otherwise we won’t be able
to make comparisons and navigate the tree. We have:For Comparable objects, we

cannot use the usual <, >, <=,
etc. operators to compare

them. Use .compareTo instead.
public class BST<K extends Comparable<? super K>, V> {

K key;
V value;
BST<K,V> left, right;

}

Notice that this BST class is a bare-bones implementation of the internal
nodes. Encapsulation and other packaging techniques from earlier chapters
can be used here to improve upon usability and convenience. To illustrate
clearly how binary search trees work, the rest of this chapter, however, will
work directly with this low-level implementation.

Working Directly With Binary Search Trees

We consider performing two simple tasks on binary search trees. Despite their
simplicity, these examples will help acquaint us with properties of the BST.

Searching For a Given Key. In this routine task, we’re given a key k and
we are asked to retrieve the value associated with that key or report that the
key doesn’t exist. Because a binary search tree maintains strict ordering of
keys, when we compare k with the key at a node, we know right away which
branch—left or right—to take next. For example, suppose v.key > k at a node
v. Then, we know that if k exists in the tree rooted at v, k must be in the
subtree v.left since all keys smaller than v.key belong in the left subtree. This
reasoning yields the following algorithm:

// not real Java code. need to use compareTo
public V search(K k) {

if (k==this.key) return this.value;
else if (k>this.key && right!=null) return right.search(k);
else if (k<this.key && left!=null) return left.search(k);
else return null;

}

“book-main” — 2021/11/24 — 22:10 — page 215 — #227

§12.4 Binary Search Trees 215

Finding the Largest Key. In Java, this is known as the lastKey() method.
Let’s pause for a moment and think about how one might locate the largest
key in the tree. A moment’s thought shows that the largest key lies at the
bottom-right tip of the tree. This is because if there’s anything bigger than the
root, it must be in the root’s right subtree. And inside that subtree, if there’s
anything bigger than its root, it must be in that root’s right subtree. But if
at any point, that subtree no longer has a right subtree (it’s empty), the root
of that subtree itself is the biggest key in that subtree. Following this line of
reasoning, we arrive at the following algorithm (once again assuming integer
keys and values):

public K lastKey() {
if (right!=null) return right.lastKey();
else return key;

}

Greatest Key Less Than or Equal to a Given Key. In Java, this is known as
the floorKey() method. How do we implement such a method?

// this is not real Java code. Use compareTo
public K floorKey(K k) {

if (k == key) return this.key;
else if (k < key && left !=null) return left.floorKey(k);
else if (k > key) {

K rightFloor = (right!=null)?right.floorKey(k):null;
return (rightFloor==null)?this.key:rightFloor;

}
else return null;

}

Adding and Removing a Key. How can we add a new element to the tree? How
about deleting an element? To add, just do a search, it will lead us to where need
to insert it. Try adding 4.

8

3

1 6

4

11

Deleting is more complicated. If it is a leaf, we can just let that node go;
otherwise, we will have to find a replacement. The details would be beyond
the scope of this book.

Remarks. A common pattern so far—and one that will be recurring through-
out the discussion of BSTs—is that the performance of operations on a BST
depends largely on the height of the tree. In both the search and lastKey

“book-main” — 2021/11/24 — 22:10 — page 216 — #228

216 CHAP 12: SETS AND MAPS

algorithms, the running time is proportional to the length of the path that the
algorithm traverses, which is never longer than the tree’s height. Therefore,
we strive to keep the height small. It is not hard to convince ourselves that
a tree with n keys has height at least log2 n. More precisely, we have the
following lemma:

Lemma 12.3. An n-node binary tree has height at least log2(n+ 1).

Proof. First, consider that the largest binary tree with height h (i.e. the
tree with the most number of nodes) has exactly 2h− 1 nodes. This is the
tree where all h levels are full, so the total number of nodes is 20 + 21 +

22 + . . . 2h−1 = 2h − 1, by the geometric sum formula. Therefore, if an
n-node tree has height h, then n 6 2h− 1, which means h > log2(n+ 1),
proving the lemma.

From the intuition developed so far, if binary search trees are kept “bal-
anced” in some way, then their heights will be small and they can usually
be used to get good bounds. We refer to such trees as balanced search trees.
If trees are never updated but only used for searching, then balancing is
easy—it needs only be done once. What makes balanced trees interesting is
their ability to efficiently maintain balance even when updated. To allow for
efficient updates, balanced search trees do not require that the trees be strictly
balanced, but rather that they are approximately balanced in some way. In
fact, it is impossible to maintain a perfectly balanced tree while allowing
efficient (e.g. O(logn)) updates.

Running time of a Map
implemented using balanced

binary search tree (BBST).

Operation BBST

get(k) O(logn)
containsKey(k) O(logn)
put(k, v) O(logn)
remove(k) O(logn)

Since any balanced binary search tree data structure will be about O(logn)
deep, the Map operations (e.g., looking up a key, inserting a new item, or
deleting an existing one) can all be implemented in at most O(logn) time.

Dozens of balanced search trees have been suggested over the years, dating
back to at least AVL trees in 1962. These trees mostly differ in how they
maintain balance. We briefly mention two of them:

1. AVL trees. Invented in 1962 by two Russians G. M. Adelson-Velskii and
E. M. Landis, these are binary search trees in which for any node, the
heights of the two child subtrees can differ by at most 1. It has been
proved that the height of an AVL tree is at most

logϕ(
√

5(n+ 2)) − 2 6 1.44 log2(n+ 2),

where ϕ = 1+
√

5
2 is the Golden ratio, which is approximately

1.6180339887 · · · .

2. Red-Black trees. More popular in practice than AVL trees, red-black trees
are binary search trees with a somewhat looser height balance criteria.
The basic idea is to label each node either red or black (requiring one
extra bit of storage) and impose certain criteria about which nodes can be
red/black. Overall, this leads to a tree with height at most 2 log2(n+ 1),
which is larger than the height of an AVL tree.

“book-main” — 2021/11/24 — 22:10 — page 217 — #229

§12.5 Hashing and Hash Tables 217

Sorted vs. Unordered Maps

The basic function of a map is to store a mapping between keys and values.
More precisely, it remembers for each key of interest, the value the key corre-
sponds to. Hence, the basic operations supported by a map are get, put, and
remove, as discussed earlier.

Java comes with two standard Map implementations: HashMap and TreeMap.
Both the HashMap and the TreeMap support these basic operations. But:

• HashMap supports them in O(1) time for reasons the next section will
detail.

• TreeMap, implemented as a red-black tree, supports them in O(logn)
time, where n is the number of keys in the collection.

This brings up the question, why would one choose to use a TreeMap over a
HashMap? Of course, if all we care about are get and put, then the HashMap
will be the implementation of choice. However, it turns out there are opera-
tions that can be efficiently performed on a sorted collection—and equally
efficiently on a balanced binary search tree—that will otherwise take a long
time to support if the collection is unordered. Below are some of such useful
operations:

• lowerKey(key) — returns the greatest key strictly less than the given
key.

• floorKey(key) — returns the greatest key less than or equal to the given
key.

• ceilingKey(key) — returns the least key greater than or equal to the
given key.

• higherKey(key) — returns the least key strictly greater than the given
key.

Hence, at a high level, readers should know the following:

• The HashMap does not care about the relative ordering of elements; it
focuses exclusively on the task of storing and retrieving a particular key.

• The TreeMap understands the relative ordering of the elements, thereby
being able to answer order-related queries (such as a nearby element).

In Java, there are two interfaces that capture the notion that the collection
is kept sorted: NavigableMap and SortedMap*. In addition to what has been
mentioned, readers can find out about other operations on such collections by
browsing the official documentation.

12.5 Hashing and Hash Tables

The O(logn) running time is fast, but we want even better performance.
Earlier, we learned that it takes only O(1) to retrieve an item in an array. Is it
possible to match this efficiency by perhaps taking advantage of the array’s
fast access to speed up our Map?

*Incidentally, NavigableMap “extends” the SortedMap interface, adding a few things for navigating
the map.

“book-main” — 2021/11/24 — 22:10 — page 218 — #230

218 CHAP 12: SETS AND MAPS

Tackle An Easier Problem: Keys Are Small Integers

Suppose for a moment that keys are all small integers. Then, we could just use
an array to keep the map. The main idea is for the i-th index in the list to store
the value for the key i. With this scheme, if the keys are numbers between 0
and H− 1, we will allocate an array of length H, filled with null initially. This
is to indicate that none of the keys are associated with a value. Following that,
we can support get(k) by looking at the k-th index and set(k, v) by setting
the k-th index to v.

As an example, the code below implements a map from {0, 1, . . . ,H− 1} to
Strings, storing the mapping inside an array called storageArray.

class SimpleIntStringMap {
private String[] storageArray;

SimpleIntStringMap(int H) { storageArray = new String[H]; }
String get(int k) { return storageArray[k]; }
void put(int k, String v) { storageArray[k] = v; }

}
The state of storageArray

after the example code finishes:

null0

"nap"1

"bugs"2

null3

"bunny"4

Suppose we have instantiate it with H = 5 and use it as follows:
SimpleIntStringMap myMap = new SimpleIntStringMap(5);
myMap.put(2, "bugs");
myMap.put(4, "bunny");
myMap.put(1, "nap");
System.out.println(myMap.get(4)); // ==> bunny

It is clear that accessing such a Map takes O(1) time, as summarized by the
following theorem:

Theorem 12.4 (Direct Hashing). If keys are integers between 0 andH− 1,
inclusive, it is possible to keep a Map in O(H) space supporting all
operations in O(1) time, except for constructing the Map initially, which
takes O(H) time.

For the general case, the obvious challenge is: what if the range of numbers is
far larger than the number of entries we intend to store (i.e., H� n) or we simply
have noninteger keys?

The first concern means using this scheme, our space usage will be about
Hwhich is significantly larger than the number of entries n, a situation that
we wish to avoid. The second concern is equally important; there are many
applications where the keys are, for example, strings.

We will address these concerns next using an idea known as hashing.

Hashing Explained

To overcome the challenges outlined earlier, we will come up with a function
that takes an arbitrary key k and maps it to a small range, say [0,N− 1], where
N is not much larger than the total number of keys n. More specifically, a
hash function hmaps each key k to an integer in the range [0,N− 1], where
N, hopefully N = O(n), is the capacity of the bucket array for a hash table.

“book-main” — 2021/11/24 — 22:10 — page 219 — #231

§12.5 Hashing and Hash Tables 219

Once we have such a hash function, we can resort to the method we just
developed: use the hash value h(k) as an index into our list A, instead of
using the real key k directly, which may be unsuitable.

It helps to conceptually break down the hash function into two components:
a component that generates hash codes and a component that compresses
a hash code into the desired range. As the hash table’s size may need to
change over time, this conceptual view is desirable as it decouples hash code
generation from the capacity of the hash table being used. They work together
as illustrated in the diagram below:

UNIVERSE

OF KEYS

HASH CODE:
INTEGERS

NUMBERS

0, 1, ..., N - 1hash code

generation function
compression

function

To illustrate this process, we will consider a key k =“déjà vu”. The function
that generates a hash code may produce a number denoting this key. For
example, this could result in the hash code 0x10010abcdeadbeef, a 64-bit
number. This number is clearly too large to be a valid range of any reasonable
array. Hence, we use a compression function to convert this hash code to a
number in the desired range. If, say, we have an array of size N = 1001, then
the compression function may give us 507.

Hash Codes

To generate the hash codes, we wish to design a function that takes an arbitrary
key k and computes an integer—the so-called hash code—for k. An important
goal for hash codes is that if two keys are different, they should lead to
different hash codes. In other words, we wish to minimize the likelihood
of two different keys getting assigned the same hash code. Below are some
common techniques for creating hash codes:

key = high low

Then,
hashCode = high ^ low

Mix High With Low. We can view our key as a large number; after all, it
is a series of bytes. Once interpreted in this way, this simple idea mixes the
higher-order bits with the lower-order ones. For example, suppose we have a
64-bit number and we want to generate a 32-bit hash code. One way to mix
them is to use the exclusive OR operator (the ^ operator in Java).

This symmetry means “evil”
and “live” would result in the
same hash code.

We could repeat this process to reduce the number bits as many times as
we wish. While this is convenient, this method has a glaring deficiency: the
high bits and the low bits are symmetrical in the sense that if we were to swap
them, we would still have the same hash code, which is not ideal.

Polynomial Hash Code. The above scheme is not a good option when the
order of the elements is important. A better hash code for this type of data
should take into account the positions of the data element. We can fix this by
using a polynomial. Let x = x0x1 . . . xn−1 be a sequence of length n > 1. Pick
an a 6= 0. To compute the hash code for x, we calculate

x0 · an−1 + x1 · an−2 + · · ·+ xn−2 · a+ xn−1 =

n−1∑
k=0

xk · an−k−1.

“book-main” — 2021/11/24 — 22:10 — page 220 — #232

220 CHAP 12: SETS AND MAPS

At first glance, this may seem like we need to compute powers of a. An
optimization is possible: Keep a running sum and as we encounter a new
data item, we multiply the running run by a and add the new value in:

int h = x[0]; // running hash code
for (int i=1;i<n;i++) {

h = h*a + x[i];
}

Note: According to Goodrich et al. [GTG14], experimental studies have
shown that 33, 37, 39, and 41 are particularly good choices for awhen working
with English words. In a list of over 50,000 English words, they found using
these numbers result in less than 7 hash-code collisions in each case.

Cyclic-Shift Code. Another popular function for hashing strings is the
cyclic-shift code. Instead of multiplying by a each time, it performs a cyclic
shift of the running sum. Below is an example implementation of cyclic-shift
code for a string s that shifts by 5 bits:

int h = 0; // running hash code
int mask = 0xffffffff; // this is 32 1's
for (int i=0;i<s.length();i++) {

h = (h << 5 & mask) | (h >> 27); // cyclic shift by 5 bits
h = h + (int) s.charAt(i); // add in the next symbol

}

Java Built-in Hash. For built-in data types, Java provides a hash function.
Every object o has o.hashCode(). The language specification requires that if
x.equals(y), then x.hashCode() == y.hashCode(). This is an extra require-
ment that we have to comply when writing a new class.

Compression

The hash code for a key kmay not be readily usable as an index into the list
we’re keeping. Often, this is because the hash codes are intentionally on a
large space (e.g., 64-bit or 128-bit numbers) to minimize the chance that two
different keys yield the same hash code. As outlined before, we will use a
compression function to map such a hash code to an integer between 0 and
N− 1 (inclusive), where N is the target storage array size. Below, we look at
two common compression functions.

Modulo N. The simplest, yet usable, compression function is to map an
integer h to h mod N. A bit of number theory shows that ifN is taken to be a
prime number, this compression function will help nicely spread out the hash
values. If N is not prime, we run a greater risk of collisions.

“book-main” — 2021/11/24 — 22:10 — page 221 — #233

§12.5 Hashing and Hash Tables 221

Linear Congruential Compression: A more sophisticated function can
yield better results. In this case, we map an integer h to

[(a · h+ b) mod p] mod N

where p is a prime number larger than N, and a 6= 0,b are numbers chosen
arbitrarily between 0 and p− 1 (inclusive).

Collision Resolution

Our plan is to keep an array of size aboutO(n) and use the hash value of each
key as the index into this array. But we aren’t quite finished.

Despite the efforts we put into crafting hash functions that will not send
two keys to the same index, it is inevitable that collisions will happen. This is
because we are mapping a (much) larger domain into a smaller range. Our
new challenge is what to do when two or more keys, say, B and N, hash to
same number and hence would occupy the same spot in the array?

Separate Chaining. The simplest solution is known as separate chaining.
If multiple keys happen to hash to the same index, no worries! In separate
chaining, we will build a list (a bucket) for that index and keep every entry
that is sent there. If too many entries end up at the same index, searching and
management will be difficult. The hope is therefore that there are only a few
entries per index. Below is an illustration with N = 7 and the keys, as well as
their corresponding hash codes and values, as shown on the left table. Key hashCode Value

T 5 0
H 6 1
E 1 2
Q 4 3
U 8 4
I 8 5
C 8 6
K 3 7
B 0 8
R 9 9
O 0 10
W 11 11
N 7 12
F 9 13
Y 2 14
X 3 15

Table

0

1

2

3

4

5

6

(B,8) (N,12)

(E,2)

(R,9) (Y,14)

(I,5) (U,4)

(O,10)

(X,15)

(W,11)

(C,6)

(K,7)

(Q,3)

(T,0)

(H,3)

(F,13)

Figure 12.2: Separate chaining example, which compresses hash codes using
the simple modulo N method.

This list can be kept as an actual linked list, and as long as the size is
small, almost any kind of collection will suffice. Notice that the get and put
operations relies on first deriving the index (via hashing) and taking time
proportional to the size of the chain/collection at that index.

Would the chains become too long, thus hampering performance? To begin
analyzing the performance implications, we will first discuss how good hash

“book-main” — 2021/11/24 — 22:10 — page 222 — #234

222 CHAP 12: SETS AND MAPS

functions behave. As a standard assumption in the literature, which can be
justified both theoretically and experimentally, good hash functions satisfy
the following property:

Definition 12.5 (SUHA: Simple Uniform Hashing Assumption). A hash
function h uniformly distributes keys among the integer values between
0 and N − 1. Mathematically, for any key k in the domain and i ∈
[0,N− 1], Pr[h(k) = i] = 1/N.

Now consider an index i ∈ [0,N− 1]. Let Xi denote the number of entries
that hash to this index. Hence, Xi represents the length of the (linked-list)
chain. Suppose the keys in this Map are k1,k2, . . . ,kn. If Xi,j indicates whether
key kj hashes to index i, then we can break down Xi as

Xi = Xi,1 +Xi,2 +Xi,3 + · · ·+Xi,n.

By linearity of expectations, we have

E[Xi] = E
[
Xi,1

]
+ E
[
Xi,2

]
+ E
[
Xi,3

]
+ · · ·+ E

[
Xi,n

]
.

If the hash function is good (i.e., satisfy SUHA), then the probability that a
key kj hashes to index i is 1/N. Thus, for every j ∈ [n], we have E

[
Xi,j

]
= 1
N

and so
E[Xi] =

n

N
.

This means that as long asN = Θ(n), the expected length of a chain Xi isΘ(1).
In summary, we can use N = Θ(n) space to keep such a map and expect the
operations to take O(1) time.

Exercises

Exercise 12.1. Consider the following two scenarios in the makeHistogram
example at the beginning of the chapter. What is the overall running time of
the function if a HashMap used for the Map? What if a TreeMap is used instead?

Exercise 12.2. Implement a class UnsortedListMap that implements the ba-
sic Map interface by keeping internally an unordered sequence as discussed
in 12.2.

Exercise 12.3. Implement a class SortedListMap that implements the basic Map
interface by keeping internally a fully-sorted sequence as discussed in 12.2.

Exercise 12.4. Extend the TreeNode class to support an arbitrary number of
children. (Hint: Instead of fixed named attributes, keep a list of references.)

“book-main” — 2021/11/24 — 22:10 — page 223 — #235

Exercises for Chapter 12 223

Exercise 12.5. By working directly with the TreeNode<String> class, write a
function longestKey that finds the longest key in the tree.

Exercise 12.6. Consider the following tree. Describe the order in which pre-,
in-, post- order traversal will visit the nodes.

a

b

c

i

d

e

f

g

Exercise 12.7. Write a function to construct a balanced binary search tree from
a list of keys—and analyze its running time. In particular, write a function

BST buildBST(int[] keys)

that takes an array of integer keys and returns a BST represented using the
previously described class.

Importantly, if n is the length of keys, the algorithm should take at most
O(n logn) time and construct a BST that is no deeper than 1 + log2 n levels.

Finally, analyze the running of your implementation, as well as the height
of the resulting tree, to show that it meets the requirements.

Exercise 12.8. Remember our discussion about tree representations? The
parent mapping representation, which falls out directly from our definition
of a tree, keeps for each node, the parent of that node in a map. For this
exercise, we will assume the keys are integers and are unique. In this context,
then, parent mapping keeps a map Map<Integer, Integer>, where a node is
referred to by its key—and looking up a node in this map would result in the
key of its parent node.

Your Task: Write functions to change to and from this representation the
more traditional representation using a TreeNode class.

Subtask I: Implement a function

HashMap<Integer, Integer> treeToParentMap(TreeNode T)

that takes a binary tree T, though not necessarily a BST, and returns a HashMap
representing the same tree using the parent-mapping representation.

Subtask II: Implement a function

TreeNode parentMapToTree(Map<Integer, Integer> map)

that takes a parent-mapping map and returns a binary tree encoded as
TreeNode. Notice that the parent-mapping representation has no notion of left
vs. right. The code is free to choose which is left and which is right. Moreover,
we guarantee that the tree encoded in the map is a legit binary tree, though
not necessarily a BST.

“book-main” — 2021/11/24 — 22:10 — page 224 — #236

224 CHAP 12: SETS AND MAPS

Exercise 12.9. Write a function secondKey that returns the second-smallest
key in a binary search tree. In the worst case, the function must run in time
proportional to the height of the tree.

Exercise 12.10. Johnny proposes to use the following simple implementation
of hashCode for his awesome class:

public int hashCode() { return 42; }

Is this a legit hash code function? Is it a good idea? Why or why not?

Exercise 12.11. The hashCode below was the implementation for the String
class in early versions of Java. Scrutinize it and explain why it is not exactly a
good hash code function, which is the reason it was replaced in later versions
of Java.

public int hashCode() {
int hash = 0;
int skip = Math.max(1, length() / 8);
for (int i = 0; i < length(); i += skip)

hash = (hash * 37) + charAt(i);
return hash;

}

Chapter Notes

Maps and sets are typically implemented using a (balanced) tree or a hash
table as the backing data structure. Binary trees and binary search trees
have been around since at least the 1960s. Goodrich et al. [GTG14] describe
other applications of tree traversals in addition to what this chapter covers.
Binary search trees (BSTs) are usually kept balanced for good performance.
Popular balanced BSTs include AVL trees, red-black trees, and treaps. Cormen
et al. [Cor+09], and Sedgewick and Wayne [SW11] are wonderful references
for the theoretical and practice sides of BSTs. To lower tree heights, trees
with a higher fan-out (i.e., nodes have more children) are also used. For
example, B-trees [BM72; Cor+09] are popular among disk-resident data such
as a database index.

The first mention of hash tables dates back to 1953. Knuth [Knu98] at-
tributes it to H. P. Luhn, who is also credited for inventing the chaining
collision-resolution method. Other than chaining, open addressing is a com-
mon collision-resolution strategy. In open addressing, all entries are kept in
the same hash table and a systematic order of examining the table, known as
a probe sequence, is needed. Linear probing, quadratic probing, and double
hashing are among popular probing strategies. Some excellent references for
good hashing functions and collision-resolution protocols are Knuth [Knu98],
Cormen et al. [Cor+09], and Goodrich et al. [GTG14]. More recent advances
include Cuckoo hashing, first described by Pagh and Rodler in 2001 [PR01].

