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Searching Static Collections 10
Searching. Searching is much
like finding a needle (an item)
in a haystack (in a collection or
a “logical” collection). This is
one example where locating
where the item is generally
requires more work than simply
looking to see if the item is
really at that location. For a
collection that has n items, we
will see the linear search
algorithm that assumes
essentially nothing about the
collection and runs in O(n)
time. We will also see the
much faster binary search
algorithm that requires the
collection to be sorted but runs
in just O(logn) time!

This chapter describes standard techniques for locating the items that
match a specified criterion in a collection of items. This problem is known as
searching. We will look at two standard algorithms—linear search and binary
search—and discuss their implementations for simple static collections. After
that, we will look at their use beyond searching such simple collections.

Searching is undoubtedly a basic operation in computing. As an example,
suppose we have an array of student records (objects), as shown below. An
ellipsis (...) indicates that more attributes exist than shown here.

[
{"id": 58001, "name": "John Green", "height": 182, ...},
{"id": 58011, "name": "Karen Best", "height": 149, ...},
{"id": 57009, "name": "Amy Brown", "height": 169, ...},
...
{"id": 59018, "name": "Jake Jacob", "height": 189, ...}

]

On this collection of data, questions such as the following often arise: given
an id, what is the name? Or given a name, what is the height? These are
examples of searching questions. When we are searching by a value k (i.e.,
locating an item whose certain attribute matches this value), this k is known
as the search key. In general, searching is used to test if a key belongs in a
collection and also to retrieve a record corresponding to that key.

10.1 Linear Search

Linear search works practically universally. It makes no assumptions about
the collection being searched nor about the key. The only assumption is we
can go over each and every member of the collection to search. To begin, we
will work with Java arrays, which are easy to traverse.

As a warm-up, we will implement a simple variant that simply tests
whether or not a key belongs to an array. Specifically, we are writing a
function

boolean exists(int[] A, int key)

that takes as input an array A of ints, together with a key key, and returns
whether the key key exists in the array A. Implementing this is straightforward:
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boolean exists(int[] A, int key) {
for (int elt : A)

if (elt == key) return true;
return false;

}

This code uses a for-each construct but is equally natural to write it using a
loop that traverses the array using an index.

For a concrete example, suppose the function is called using the following
parameters:

int[] A = {10, 19, 3, 11, 33, 42};
boolean r = exists(A, 11);

Then, pictorially, the code is following the arrow in the diagram below until
either it hits that key or reaches the end of the array, each time testing if the
item there matches the key:

10 19 3 33 4211A =

x = 11

If, instead, we’re interested in returning the index where that key is found.
The specification becomes to write a function

int find(int[] A, int key)

that takes as input an array A of ints, together with a key key, and returns a
number i such that A[i] == key or −1 if that key does not exist in A.

To update the code, when we consider an element, we will want to know
the index in addition to what that item is. In this case, accessing the array
using indexing seems cleaner:

int find(int[] A, int x) {
for (int i=0;i<A.length;i++)

if (A[i] == x) return i;
return -1;

}

Could we have done better?
The answer is no. Without any

additional structure or
information about the collection
or the key being looked up, we
cannot hope to do much better
than going through every one

of them. This argument gives a
lower bound of Ω(n).

Running Time Analysis. What is the running time of these implementa-
tions? It is easy to see that they all have the same complexity of O(n): In
addition to the setup code (which takes constant time), the bulk of the work is
the for loop that goes over all of the items in the array, a total of n = len(A)
times. Each time, it does a constant amount of work, only doing comparison
and increment operations. Hence, the total cost is O(n).

Does this algorithm really going to take O(n)? At least it does for some input.
Consider, for example, inputs where the key is not present in A. In order for
it to know that the key is not in A, the algorithm has to look through all the
items—and that is Θ(n) time spent.
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Generalization

The only assumption we made about linear search is simply that we can
go over all of the members of that collection. In other words, the linear
search algorithm “unfolds” the collection into a linear structure despite the
underlying representation. For example, we could have a linked list where the
underlying physical organization requires pointer chasing, but the conceptual
view is that it is a linear list and linear search will look at each item in its
logical—i.e., linear list—order.

52 2 34 31 19 47

This means that in addition to arrays, any structure where such traversal is
possible can use linear search. Incidentally, in Java, this quality is known as
being iterable. The following code offers a generalization of our linear search
code to any iterable collection:

Code 10.1: Linear search on an Iterable

 int find(Iterable<T> A, T key) {
 int i=0;
 for (T elt : A) {
 if (elt.equals(key)) return i;
 ++i;
 }
 return -1;
 }

Several things are different from before. Because A is an iterable, we can
use the for-each syntax to loop over A. At the same time, we store our position
in the variable i, which is incremented every time we move on to the next
element. Furthermore, we have updated the key type to be a generic type
T. This means we need to use .equals to compare whether two given items
are equal. Note that there are other ways to traverse an iterable collection.
Readers should look into the related concept of Iterators.

10.2 Binary Search

As was argued earlier, searching requires Ω(n) time in general because all
items in the collection have to be examined. We will now see if improvements
can be made if we make certain assumptions about the collection.

Sorted Arrays. If an array
A = [a1,a2, . . . ,an] is sorted,
then a1 6 a2 6 · · · 6 an.

The assumption we will be making is a simple one: the collection being
searched keeps the items sorted by the search key. For ease of exposition, we
will think of an array ordered from small to large by the search key.
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The hope is that by sacrificing generality (only operating on sorted arrays),
we can bring the running time down significantly: We will show thatO(logn)
per search is possible even in the worst case. Concretely, we’re aiming to write
a function

int find(int[] A, int key)

that takes as input a sorted array A of ints, together with a key key, and
returns a number i such that A[i] == key or −1 if that key does not exist in A.
This is the same specification as before; we only want to do it faster!

Recursive Thinking Plan

We will design a recursive algorithm for the task. To design the recursive
process, we will use the same blueprint as seen earlier. Let us answer the
following questions:

Nothing can appear in the
empty array!

(Q1) How to solve small instances? We begin by setting how we measure
the input size. We anticipate working with smaller and smaller arrays, so it
makes sense to use the array size as our measure. Therefore, when calling
find(A, key), we say the size of this problem is n = len(A).

As usual, we have the liberty of choosing the smallest instance that won’t
be solved recursively. It is natural to pick the smallest possible input—an
empty array. We know for fact that an empty array contains nothing, so no
key is in that array. Hence, we have if (A.length==0) return -1.

(Q2) How to tackle an instance in terms of smaller instances? Consider a
call to find(A, key), where len(A) = n. Say, for any 0 6 len(T) < n and
key, we already know how to compute find(T, key). The question to answer
now is: can we compute find(A, x) in terms of find calls on smaller inputs?

We wish to split the problem in half, and it seems like we could something
better than scanning the whole array because it is sorted.

Sorted Array. In a sorted
array A = [a1,a2, . . . ,an], if

the middle index is
m = len(A)/2, then,

. . . 6 am 6 . . .

­ Tips

If we compare the search key key with the element in the middle of the
array, then we can decide which half to look at next depending on the
comparison outcome.

More specifically, if m = len(A)/2, then because A is sorted in ascending
order, we know that

• If key == A[m], the key is found at m
• If key < A[m], the search key appears before m, so we should look at

A[:m] next.
• If key > A[m], the search key appears after m, so we should look at

A[m+1:] next.

Note that in no case do we need to look at A[m] again because failing the first
condition, we have determined that A[m] != key. Importantly, the problem
size becomes smaller in all cases—either immediately done or the problem
size has shrunk in half.

We translate this idea into code as follows:
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int find(int[] A, int key) {
if (A.length == 0) return -1;

int m = A.length/2;
if (A[m] == key) return m; // found at m
if (key < A[m]) // key is less than A[m]

return find(Arrays.copyOfRange(A, 0, m), key);
// otherwise, key is more than A[m]
int r = find(Arrays.copyOfRange(A,m+1,A.length), key);
if (r < 0) return -1;
else return m + 1 + r;

}

Notice how the case where the search key is more than A[m] is handled.
Because the recursive call can have two outcomes—found at some index in
the sliced array or not found (-1)—we need to check the result of find and
adjust it accordingly before returning the value.

Let us take a quick look at an execution of the algorithm.

Example. The sorted input array is

[1, 7, 10, 14, 19, 23, 24, 28, 33, 34, 35, 48, 51, 57]

and the search key is 7. Then, once find is called, the following sequence
of operations will unfold:

1 7 10 14 19 23 24

1 7 10

1 7 10

14 19 23 24

19 23 24

28 33 34 35 48 51 57

33 34 35 48 51 57

m = len(A)//2

m = len(A)//2

m = len(A)//2first_half

first_half

other_half

other_half ❌

❌
the answer!

Does it work with arbitrary arrays? We expect the answer to be no, but
why? If the array is unordered, unlike in the example above, the problem is
we cannot say for certain which side to look into next—because either side
could contain the key we are looking for. For a concrete example, try searching
for the key 5 in the following array:

[10, 19, 3, 11, 33, 42, 5]

Running Time

This code above follows the recipe of reducing the problem size in half. But
does it help and how much does it really help? We will analyze the time complexity
of this program. The plan is to write a recurrence in the problem size.
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Let T(n) denote the time find takes to search for any key
in a sorted array of length n.

Then, it follows that T(0) = O(1). For n > 0, we determine the cost of T(n)
as follows: First, we perform constant work (computing the middle index,
testing the middle element with the key) to arrive at the conclusion about the
relative position between A[m] and key. Every step is O(1) so far. After that,
three things could happen:

• If key == A[m], the key is atm. We return right away—the cost is O(1).
• If key < A[m], we look at A[:m] next. The cost here is the cost of call-

ing find(A[:m]) and constructing A[:m]. The length of A[:m], as was
determined before, ism, so the former cost is T(m), and the latter cost
is O(m) via Arrays.copyOfRange. Knowing that m = n/2, we have
T(m) = T(n/2) and O(m) = O(n).

• If key > A[m], we look at A[m+1:] next. The cost here is the cost of
calling find(A[m+1:]) and constructing A[m+1:]. The length of A[m+1:],
as was determined before, is n− (m+ 1) + 1 = n−m, so the former
cost is T(n −m), and the latter cost is O(n −m). But m = n/2, so
T(n−m) = T(n/2) and O(n−m) = O(n).

The cost of T(n) is therefore bounded from above by the largest of the three
possibilities. Hence, T(n) 6 T(n/2) +O(n), which solves to T(n) ∈ O(n).

Unfortunately, with these “upgrades,” we still haven’t beaten the complex-
ity of linear search!

Eliminating the Most Costly Operations

To improve upon this, we need to identify the “bottlenecks” in our algorithm—
the most costly steps that drag everything else down with them. It turns out
this is not difficult to locate: making a copy of A (via copyOfRange) is costly—it
has linear complexity.

The copy operation makes a copy of half of the array, so it necessarily
spends linear time. To avoid this costly step, we will use two indices to
demarcate where the search will take place. We’ll revise the algorithm by
adding a helper function

private int findHelper(int[] A, int lo, int hi, int key)

which looks for key between A[lo], . . . , A[hi-1]. We introduce a helper func-
tion because the parameters of the function that we need internally differ
from the interface we want to expose to the user—we hide the internal “mess”
by making find call the helper function. This way, our users will enjoy the
same interface to find despite what has been changed internally.

Rather than redoing all the steps again, we will simply note the major
differences from the previous version:

• While the previous version measures the problem size in the length of
A, this version will measure the size in n = hi - lo, which is the true
problem size. Our code will not look outside the range lo, . . . , hi-1).

• Moreover, we no longer need to compensate for the index offset due to
slicing. Hence, for the key > A[m] case, we no longer need to addm+ 1
to the result.
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Code 10.2: Fast binary search

 private int findHelper(int[] A, int lo, int hi, int key) {
 if (lo >= hi) return -1;


 int m = (lo+hi)/2;


 if (A[m] == key) return m;


 if (key < A[m])
 return findHelper(A, lo, m, key);

 return findHelper(A, m+1, hi, key);
 }


 int find(int[] A, int key) {
 return findHelper(A, 0, A.length, key);
 }

The revised code is shown in Code 10.2. Notice that inside find, we call
findHelper with the range 0 through A.length, meaning the real valid indices
are 0, 1, . . . , A.length-1. Also, the effect size of the array (i.e., the number of
items still under consideration) is n =hi - lo. This makes the midpoint of
the this range m = (lo + hi)/2*.

Running Time. To analyze the complexity of the new find, we resort to
writing a recurrence relation for findHelper, which is the real workhorse. Let
n = hi− lo. Then,

T(0) = O(1) and

T(n) = T(n/2) +O(1)

This is true because for n > 0, in all cases, we only perform a constant
number of arithmetic and comparison operations. This recurrence solves to
T(n) ∈ O(logn). Therefore, using binary search, finding any key at all in a
sorted collection takes O(logn) time.

Remarks

In Java, a family of functions

Arrays.binarySearch Collections.binarySearch

are readily available. Though, there will be situations that require special-
ized versions of binary search. These variants of binary search can often be
implemented using the very same idea but with some modifications. For
example, if the array we are searching has multiple entries of the key, we
could customize binary search to look for the first element or to look for the
last element. The exercises at the end of the chapter explore these further.

*To prevent overflow, it is better to write m = lo + (hi - lo)/2
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10.3 Applications

There are numerous applications of these common searching techniques. We
will look at two, which at first glance don’t seem like searching problems.

Equation Solving

What does the curve ex look like? What about 16x? Considering the trends of
these curves, we realize they must intersect each other somewhere. But where
exactly is this? Mathematically, we wish to solve for an x for which

ex = 16x.

0 2 4
0

50

100

150

0 2 4

0

50

0 2 4

0

50

100

150

At first glance, this may seem like a problem that one was told to solve back
in an early algebra course. But a few attempts at manipulating this equation
don’t seem to give an analytical solution. As a computer scientist, you may
wonder, what we can do with a fast computer and laziness?

Once again, at first glance, this does not look much like a search problem.
But we can transform the problem slightly. When we ask for an x for which
ex = 16x, we can equivalently ask for an x such that ex − 16x = 0. Call this
expression f(x), so

f(x) = ex − 16x.

When we plotted it above, we saw that there are two places where these
curves intersect: one between −1 and 1 (to be super crude), and one between
3.5 and 4.5. Let us now zoom in on f(x) on these two ranges separately.

−1 0 1

−10

0

10

3.5 4 4.5

−20

0

20

Suppose we would like to focus on finding the x between 3.5 and 4.5. What
can we do?
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In applying linear search, we
subdivide [a,b] into
evenly-spaced points and look
for a point x that minimizes
|f(x)|. The function f needs not
be monotone in this range.

Linear Search. We cannot quite solve it exactly. But we can approximate the
answer. If we are happy with reaching the 100-th (i.e., correct within ±0.01),
we could try every value between 3.5 and 4.5 in increments of 0.01. There
are many values to try: (4.5 − 3.5)/0.01 = 100. But this is still manageable.
In general, if we are looking in the range [a,b] and we are hoping to have
precision within ±ε, then the total time required will be O((b− a)/ε) because
there are b−aε values to try.

We are technically working with
the same evenly-spaced set of
points but by assuming that f is
monotone in this range, we can
apply binary search to find an x
that minimizes |f(x)|.

Binary Search. One nice property of f(x) in the range 3.5 to 4.5 is that
f(3.5) < 0 and f(4.5) > 0. Furthermore, the function f is increasing in that
range. This means in that range, if x < x ′, then f(x) < f(x ′). In other words,
it’s sorted! Hence, we could apply binary search to look for an x where
f(x) = 0. If the precision sought is ±0.01, there are 100 values in the space,
so it takes about log2(100) probes. Therefore, in general, it costs us around
O(log((b− a)/ε)) time to look for such an answer, a marked improvement
over linear search for sure.

This idea of applying binary search to root finding is also known as the bi-
section method, one of the basic methods for finding roots numerically. Read-
ers interested in this type of algorithms should look further into a course/book
on numerical methods.

The Stuttering-Substring Problem

Consider two strings A and B. We say that A is a substring of B if it is possible
to find the letters ofA inside of B in the same order that they appear originally
in A, potentially skipping some letters of B. More formally, we say that A is a
substring of B if there are indicies 0 6 i0 < i1 < i2 < · · · < in−1 < m into B
such that

B[ik] = A[k], ∀ k = 0, 1, 2, . . . ,n− 1.

As examples, “cat” is a substring “excavate”, but “vet” isn’t a substring of
“excavate”.

It is a simple exercise to check whether A is a substring of B. This can
actually be done inO(len(A)+len(B)) time. For the rest of this discussion, we
will assume a function boolean isSubstr(String A, String B) that checks
whether A is a substring of B in the desired running time.

Putting that aside for now, if A is made up of A = a0a1a2 . . .an−1, we
define the concept of stuttering as follows: A(k) expands the string A by
repeating each ai consecutively k times. We defineA(0) to generate the empty
string, which is a substring of any B. For example, if A = "hello", then
A(2) = "hheelllloo". And if A = "hi", then A(5) = "hhhhhiiiii".

Given strings A and B, the stuttering-substring problem is to find the largest
k > 0 such that A(k) is a substring of B. This problem is well-defined because
for sure A(0) is a substring of B. But what is the largest such k?

As an example, consider A = "ho". and B = "hi and hello jello". It is
easy to see that each of A(0), A(1), and A(2) is a substring of B while A(3) is
not. Therefore, in this particular example, the answer is 2.
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Linear Search. To solve this problem, we could try linear search, probing
all k in increasing order (k = 0, 1, 2, . . . ) until we find one that is no longer a
substring. We will analyze this algorithm briefly. Suppose n = len(A) and
m = len(B). Then, since for each k that we try, we pay O(k · n+m) to use
isSubstr. This means that if t is the smallest point where it is no longer a
substring, then the total cost will be

t∑
k=0

(k ·n+m) = n · t(t+ 1)
2

+mt ∈ O(nt2 +mt).

We further know that t can never exceed m/n+ 1 because at that point the

length of A(
m
n +1) is already m+ n > m and cannot be a substring of B for

sure. Hence, with the knowledge that t 6 m/n+ 1, we conclude that the
worst-case running time of our linear search is

O
(
n ·
(
m
n + 1

)2
+m(mn + 1)

)
= O(m2/n).

Binary Search? (How) can we apply binary search? As we saw already, an
important requirement is that the space being searched has to be ordered.
But this is already so. Moreover, we can think of the space as a conceptual
array a where the entries are only 1s and 0s—and all the 1s come before
all the 0s. In this setup, a[i] is 1 if A(i) is a substring of B. Therefore, we
can readily apply binary search to find the last 1. We further know that the
smallest possible k is 0 and the largest possible k is m/n+ 1, hence giving
us the lower- and upper- bounds. Details are left to readers to figure out (in
Exercise 10.10.). But it suffices to say that using binary search in a space of size
(m/n+ 1) − 0+ 1 = m/n+ 2 will take at mostO(log(m/n)) tests, where each
test is a call to isSubstr. But the length of A(k) and B never exceed m+ n,
so each test (via isSubstr) is O(m+n). This means the total running time is
O((n+m) log(m/n)) in the worst case.

Exercises

Exercise 10.1. Suppose the input sequence in Code 10.1 is instead given as an
Iterator<T>. Rewrite find accordingly.

Exercise 10.2. Consider the sorted array
[1, 7, 10, 14, 19, 23, 24, 28, 33, 34, 35, 48, 51, 57]

Step through the algorithm in Code 10.2 looking for key key = 48.

Exercise 10.3. Let n > 2 be a power of two. The binary search algorithm in
Code 10.2 returns as soon as it finds the search key. Design an array of length
n and a key that exists in that array so that our binary search implementation
takes at least 2 log2(n) − 1 comparisons. Count the comparison A[m] == key
as one and key < A[m] as another.
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Exercise 10.4. Reimplement the logic of findHelper in Code 10.2 without
using recursion.

Exercise 10.5. Suppose we are to reimplement binary search from Code 10.2
for use with a LinkedList as opposed to a fixed-size array. Would it still be
correct? What about the running time in terms of the length of the list n?

Exercise 10.6. Our binary search algorithm, as discussed, has the property
that if the key we’re looking for appears multiple times, the algorithm may
return the index of any of them.

Adapt the binary search algorithm so that it always returns the index of
the last occurrence of the search key. More precisely, let a be a sorted array of
elements (i.e., a[0] 6 a[1] 6 · · · 6 a[n− 1], where n is the length of a). You are
to implement a function Integer binarySearchLast(int[] a, int k) that
returns the value of max{i | a[i] == k}; or otherwise, returns null because
the key k is not present in the input array. For example,

• binarySearchLast({1,2,2,2,4,5}, 2) returns 3.
• binarySearchLast({1,2,2,2,4,5}, 0) returns null.
• binarySearchLast({1,2,2,2,4,5}, 5) returns 5.

Whatever the input may be, your implementation must take at most
O(logn) time, where n = len(a).
(Hints: Your code must run in O(logn) even in the case when there is a long streak
(say of length about n) of the key we’re searching for. It won’t be fast enough to use
standard binary search and keep moving right from that point by one until we reach
the last key.

Exercise 10.7. The rank of an element e with respect to an array L, denoted by
r(L, e), is the number of elements in L that are less than e. For example, if L is
the array {10, 21, 32, 53, 54}, then

• r(L, 9) is 0
• r(L, 10) is 0
• r(L, 33) is 3 because 10, 21, and 32 are all smaller than 33.
Let n = len(A) and m = len(B). Denote by A+ B the array obtained by

concatenating A with B. We guarantee that A+B contains no repeated numbers.
Your Task: Write a function

int rank(int[] A, int[] B, int e)

that takes two sorted arrays A and B and an integer e, and computes the rank
r(A+ B, e) without actually expanding out A+ B. Your code must run in at
most O(log(n+m)) time or faster.

Exercise 10.8. Continuing from Exercise 10.7., write a function
Integer select(int[] A, int[] B, int k)

that locates and returns the rank k element from A+ B. To be precise, your
code must return the same answer as sorted(A+B)[k] (only faster!), where
sorted returns the sorted version of the input. If the rank k element is not
present, you will return null. Your code must run in at most O(log2(n+m))

time or faster.
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BONUS: If you are up for an extra challenge, improve the running time to
O(log(n+m)) or faster.

Exercise 10.9. Let f(x) = ex − 16x. Write a function

double solve(double eps)

that uses binary search to determine an x between 3.5 and 4.5 where |f(x)| <

eps. This means solving f(x) up to ±ε, where ε = eps.

Exercise 10.10. The stuttering-substring problem is as defined earlier in the
chapter. You will solve this problem in a few steps:

(i) Implement a function boolean isSubstr(String a, String b) that
takes two strings a and b as input, and returns a Boolean indicating
whether a is a substring of b. It must run in O(len(a)+ len(b)) time.

(ii) You will analyze why your function meets in running time bound. (Hint:
Argue that each letter is “touched” at most once. Look at the merge function in
merge sort for inspiration.)

(iii) Write a function String stutter(String A, int k) that takes a string
A and a number k > 0 and produces A(k). For A of length n, we expect
this function to run within O(nk) time.

(iv) Implement (perhaps by reusing the logic from a previous exercise as
well) a function int maxStutter(String a, String b) that takes as in-
put two nonempty strings a and b and returns a number that is the answer
to the stuttering-substring problem for the pair of strings.

(v) Analyze the running time of your implementation. We expect your
code to run in at most O((m+n) log(mn )) time, where m = len(B) and
n = len(A).

(Hint: To analyze the running time, write a recurrence to determine the number
of “probes.” How should we define a probe? If the number of probes isO(P(n))
and each probe costs at most O(f(n)), then the total running time is at most
O(P(n)f(n)).)

Chapter Notes

Techniques for finding a matching item in a static collection dates back
to antiquity. Use of linear search in computing is probably as old as the
computing field itself. Introducing ordering (i.e., sorting the collection) is an
ancient idea that brings about more structure to the collection, enabling search
to be carried out more efficiently. Further optimization to binary search is
discussed in, for example, Sedgewick and Wayne [SW11]. Readers should
know that besides searching a collection as discussed in this chapter, binary
search is also used in the context of root finding in numerical computations
(often known the bisection method in that context). The stuttering-substring
problem was studied previously in the literature. Mirzaian [Mir87] presents
an optimal linear-time algorithm for the problem, a faster running time than
what is asked for in the exercise.


